Skip to main content
Log in

Past, Present and Perspective Methodology for Groundwater Modeling-Based Machine Learning Approaches

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Growing population and rapid urbanization are among the major causes of ground water level (GWL) depletion. Modeling GWL is considered as tough task as the GWL variation depends on various complex hydrological and meteorological variables. However, few methodologies have been proposed in literature for modeling GWL. The present research offers a summary of the most common methodologies in GWL forecasting using artificial intelligence (AI), as well as bibliographic assessments of the authors' knowledge and an overview and comparison of the findings. The characteristics and capabilities of modeling methods and the consideration of input data types and time steps have been reviewed in 40 studies published from 2010 to 2020. The reviewed studies succeeded in modeling and predicting the GWL in various regions using the methods proposed by the authors. Trial and error method in certain phases of AI modeling was helpful for testing in special applications for GWL modeling. The reviewed papers provided several partial and overall findings that may provide relevant recommendations to investigators who would like to conduct similar work in GWL modeling. In this report, a variety of new concepts for designing novel approaches and enhancing modeling efficiency are also discussed in the relevant field of analysis. Analyzing modeling methods used in all the reviewed studies it was estimated that the machine learning methods are efficient enough for modeling GWL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adamowski J, Chan HF (2011) A wavelet neural network conjunction model for groundwater level forecasting. J Hydrol 407:28–40. https://doi.org/10.1016/j.jhydrol.2011.06.013

    Article  Google Scholar 

  2. Amaranto A, Munoz-Arriola F, Corzo G, Solomatine DP, Meyer G (2018) Semi-seasonal groundwater forecast using multiple data-driven models in an irrigated cropland. J Hydroinf 20:1227–1246. https://doi.org/10.2166/hydro.2018.002

    Article  Google Scholar 

  3. Amaranto A, Munoz-Arriola F, Solomatine DP, Corzo G (2019) A Spatially enhanced data-driven multimodel to improve semiseasonal groundwater forecasts in the high plains aquifer, USA. Water Resour Res 55:5941–5961. https://doi.org/10.1029/2018WR024301

    Article  Google Scholar 

  4. Azamathulla HM (2013) A review on application of soft computing methods in water resources engineering, metaheuristics in water, geotechnical and transport engineering. Elsevier, New York, pp 27–41. https://doi.org/10.1016/b978-0-12-398296-4.00002-7

    Book  Google Scholar 

  5. Bahmani R, Ouarda TBMJ (2020) Groundwater level modeling with hybrid artificial intelligence techniques. J Hydrol 595:125659. https://doi.org/10.1016/j.jhydrol.2020.125659

    Article  Google Scholar 

  6. Bai T, Tsai WP, Chiang YM, Chang FJ, Chang WY, Chang LC, Chang KC (2019) Modeling and investigating the mechanisms of groundwater level variation in the Jhuoshui River Basin of Central Taiwan. Water (Switzerland). https://doi.org/10.3390/w11081554

    Article  Google Scholar 

  7. Barzegar R, Fijani E, Asghari Moghaddam A, Tziritis E (2017) Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models. Sci Total Environ 599–600:20–31. https://doi.org/10.1016/j.scitotenv.2017.04.189

    Article  Google Scholar 

  8. Bowes BD, Sadler JM, Morsy MM, Behl M, Goodall JL (2019) Forecasting groundwater table in a flood prone coastal city with long short-term memory and recurrent neural networks. Water (Switzerland). https://doi.org/10.3390/w11051098

    Article  Google Scholar 

  9. Bozorg-Haddad O, Delpasand M, Loáiciga HA (2020) Self-optimizer data-mining method for aquifer level prediction. Water Sci Technol Water Supply 20:724–736. https://doi.org/10.2166/ws.2019.204

    Article  Google Scholar 

  10. Butler JJ, Stotler RL, Whittemore DO, Reboulet EC (2013) Interpretation of water level changes in the high plains aquifer in Western Kansas. Groundwater 51:180–190. https://doi.org/10.1111/j.1745-6584.2012.00988.x

    Article  Google Scholar 

  11. Cao Y, Yin K, Zhou C, Ahmed B (2020) Establishment of landslide groundwater level prediction model based on GA-SVM and influencing factor analysis. Sensors (Switzerland). https://doi.org/10.3390/s20030845

    Article  Google Scholar 

  12. Chang FJ, Chang LC, Huang CW, Kao IF (2016) Prediction of monthly regional groundwater levels through hybrid soft-computing techniques. J Hydrol 541:965–976. https://doi.org/10.1016/j.jhydrol.2016.08.006

    Article  Google Scholar 

  13. Chang J, Wang G, Mao T (2015) Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model. J Hydrol 529:1211–1220. https://doi.org/10.1016/j.jhydrol.2015.09.038

    Article  Google Scholar 

  14. Chen C, He W, Zhou H, Xue Y, Zhu M (2020) A comparative study among machine learning and numerical models for simulating groundwater dynamics in the Heihe River Basin, northwestern China. Sci Rep. https://doi.org/10.1038/s41598-020-60698-9

    Article  Google Scholar 

  15. Demirci M, Üneş F, Körlü S (2019) Modeling of groundwater level using artificial intelligence techniques: a case study of Reyhanli region in Turkey. Appl Ecol Environ Res 17:2651–2663. https://doi.org/10.15666/aeer/1702_26512663

    Article  Google Scholar 

  16. Di Nunno F, Granata F (2020) Groundwater level prediction in Apulia region (Southern Italy) using NARX neural network. Environ Res 190:110062. https://doi.org/10.1016/j.envres.2020.110062

    Article  Google Scholar 

  17. Djurovic N, Domazet M, Stricevic R, Pocuca V, Spalevic V, Pivic R, Gregoric E, Domazet U (2015) Comparison of groundwater level models based on artificial neural networks and ANFIS. Sci World J. https://doi.org/10.1155/2015/742138

    Article  Google Scholar 

  18. El Ibrahimi A, Baali A, Couscous A, El Kamel T, Hamdani N (2017) Comparative study of the three models (ANN-PMC), (DWT-ANN-PMC) and (MLR) for prediction of the groundwater level of the surface water table in the Saïss Plain (North of Morocco). Int J Intell Eng Syst 10:220–230. https://doi.org/10.22266/ijies2017.1031.24

    Article  Google Scholar 

  19. Emadi A et al (2021) Multivariate modeling of river water withdrawal using a hybrid evolutionary data-driven method. Water Supply. https://doi.org/10.2166/ws.2021.224

    Article  Google Scholar 

  20. Evans SW, Jones NL, Williams GP, Ames DP, Nelson EJ (2020) Groundwater Level Mapping Tool: an open source web application for assessing groundwater sustainability. Environ Model Softw 131:104782. https://doi.org/10.1016/j.envsoft.2020.104782

    Article  Google Scholar 

  21. Gemitzi A, Stefanopoulos K (2011) Evaluation of the effects of climate and man intervention on ground waters and their dependent ecosystems using time series analysis. J Hydrol 403:130–140. https://doi.org/10.1016/j.jhydrol.2011.04.002

    Article  Google Scholar 

  22. Gholami V, Chau KW, Fadaee F, Torkaman J, Ghaffari A (2015) Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers. J Hydrol 529:1060–1069. https://doi.org/10.1016/j.jhydrol.2015.09.028

    Article  Google Scholar 

  23. Ghose DK, Panda SS, Swain PC (2010) Prediction of water table depth in western region, Orissa using BPNN and RBFN neural networks. J Hydrol 394:296–304. https://doi.org/10.1016/j.jhydrol.2010.09.003

    Article  Google Scholar 

  24. Gong Y, Wang Z, Xu G, Zhang Z (2018) A comparative study of groundwater level forecasting using data-driven models based on ensemble empirical mode decomposition. Water (Switzerland). https://doi.org/10.3390/w10060730

    Article  Google Scholar 

  25. Han JC, Huang Y, Li Z, Zhao C, Cheng G, Huang P (2016) Groundwater level prediction using a SOM-aided stepwise cluster inference model. J Environ Manag 182:308–321. https://doi.org/10.1016/j.jenvman.2016.07.069

    Article  Google Scholar 

  26. Hasda R, Rahaman MF, Jahan CS, Molla KI, Mazumder QH (2020) Climatic data analysis for groundwater level simulation in drought prone Barind Tract, Bangladesh: modelling approach using artificial neural network. Groundw Sustain Dev 10:100361. https://doi.org/10.1016/j.gsd.2020.100361

    Article  Google Scholar 

  27. Huang F, Huang J, Jiang SH, Zhou C (2017) Prediction of groundwater levels using evidence of chaos and support vector machine. J Hydroinf 19:586–606. https://doi.org/10.2166/hydro.2017.102

    Article  Google Scholar 

  28. Iqbal M, Ali Naeem U, Ahmad A, Rehman H-U, Ghani U, Farid T (2020) Relating groundwater levels with meteorological parameters using ANN technique. Meas J Int Meas Confeder 166:108163. https://doi.org/10.1016/j.measurement.2020.108163

  29. Jalalkamali A, Sedghi H, Manshouri M (2011) Monthly groundwater level prediction using ANN and neuro-fuzzy models: A case study on Kerman plain. Iran J Hydroinform 13:867–876. https://doi.org/10.2166/hydro.2010.034

    Article  Google Scholar 

  30. Javadinejad S, Dara R, Jafary F (2020) Modelling groundwater level fluctuation in an Indian coastal aquifer. Water SA 46:665–671. https://doi.org/10.17159/wsa/2020.v46.i4.9081

    Article  Google Scholar 

  31. Jeong J, Park E, Chen H, Kim KY, Shik Han W, Suk H (2020) Estimation of groundwater level based on the robust training of recurrent neural networks using corrupted data. J Hydrol 582:124512. https://doi.org/10.1016/j.jhydrol.2019.124512

    Article  Google Scholar 

  32. Kasiviswanathan KS, Saravanan S, Balamurugan M, Saravanan K (2016) Genetic programming based monthly groundwater level forecast models with uncertainty quantification. Model Earth Syst Environ 2:1–11. https://doi.org/10.1007/s40808-016-0083-0

    Article  Google Scholar 

  33. Kaya YZ, Üneş F, Demirci M (2018) Groundwater level prediction using artificial neural network and M5 tree models. Casa Cărţii de Ştiinţă. https://doi.org/10.24193/awc2018_23

    Article  Google Scholar 

  34. Kenda K, Peternelj J, Mellios N, Kofinas D, Čerin M, Rožanec J (2020) Usage of statistical modeling techniques in surface and groundwater level prediction. J Water Supply Res Technol AQUA 69:248–265. https://doi.org/10.2166/aqua.2020.143

    Article  Google Scholar 

  35. Khedri A, Kalantari N, Vadiati M (2020) Comparison study of artificial intelligence method for short term groundwater level prediction in the northeast Gachsaran unconfined aquifer. Water Supply. https://doi.org/10.2166/ws.2020.015

    Article  Google Scholar 

  36. Kombo OH, Kumaran S, Sheikh YH, Bovim A, Jayavel K (2020) Long-term groundwater level prediction model based on hybrid KNN-RF technique. Hydrology. https://doi.org/10.3390/HYDROLOGY7030059

    Article  Google Scholar 

  37. Kumar A, Babu BM, Satishkumar U, Reddy GVS (2020) Comparative study between wavelet artificial neural network (WANN) and artificial neural network (ANN) models for groundwater level forecasting. Indian J Agric Res 54:27–34. https://doi.org/10.18805/IJARe.A-5079

    Article  Google Scholar 

  38. Le Brocque AF, Kath J, Reardon-Smith K (2018) Chronic groundwater decline: a multi-decadal analysis of groundwater trends under extreme climate cycles. J Hydrol 561:976–986. https://doi.org/10.1016/j.jhydrol.2018.04.059

    Article  Google Scholar 

  39. Li H, Lu Y, Zheng C, Yang M, Li S (2019) Ground water level prediction for the arid oasis of Northwest China based on the artificial bee colony algorithm and a back-propagation neural network with double hidden layers. Water (Switzerland) 11:1–20. https://doi.org/10.3390/w11040860

    Article  Google Scholar 

  40. Maheswaran R, Khosa R (2013) Long term forecasting of groundwater levels with evidence of non-stationary and nonlinear characteristics. Comput Geosci 52:422–436. https://doi.org/10.1016/j.cageo.2012.09.030

    Article  Google Scholar 

  41. Malekzadeh M, Kardar S, Shabanlou S (2019) Simulation of groundwater level using MODFLOW, extreme learning machine and Wavelet-Extreme Learning Machine models. Groundw Sustain Dev 9:100279. https://doi.org/10.1016/j.gsd.2019.100279

    Article  Google Scholar 

  42. Malik A, Bhagwat A (2020) Modelling groundwater level fluctuations in urban areas using artificial neural network. Groundw Sustain Dev 12:100484. https://doi.org/10.1016/j.gsd.2020.100484

    Article  Google Scholar 

  43. Moghaddam HK, Moghaddam HK, Kivi ZR, Bahreinimotlagh M, Alizadeh MJ (2019) Developing comparative mathematic models, BN and ANN for forecasting of groundwater levels. Groundw Sustain Dev 9:100237. https://doi.org/10.1016/j.gsd.2019.100237

    Article  Google Scholar 

  44. Mohanasundaram S, Kumar GS, Narasimhan B (2019) A novel deseasonalized time series model with an improved seasonal estimate for groundwater level predictions. H2Open J 2:25–44. https://doi.org/10.2166/H2OJ.2019.022

    Article  Google Scholar 

  45. Mohanty S, Jha MK, Kumar A, Panda DK (2013) Comparative evaluation of numerical model and artificial neural network for simulating groundwater flow in Kathajodi-Surua Inter-basin of Odisha, India. J Hydrol 495:38–51. https://doi.org/10.1016/j.jhydrol.2013.04.041

    Article  Google Scholar 

  46. Moravej M, Amani P, Hosseini-Moghari SM (2020) Groundwater level simulation and forecasting using interior search algorithm-least square support vector regression (ISA-LSSVR). Groundw Sustain Dev 11:100447. https://doi.org/10.1016/j.gsd.2020.100447

    Article  Google Scholar 

  47. Mukherjee A, Ramachandran P (2018) Prediction of GWL with the help of GRACE TWS for unevenly spaced time series data in India: analysis of comparative performances of SVR, ANN and LRM. J Hydrol 558:647–658. https://doi.org/10.1016/j.jhydrol.2018.02.005

    Article  Google Scholar 

  48. Nourani V, Alami MT, Vousoughi FD (2015) Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling. J Hydrol 524:255–269. https://doi.org/10.1016/j.jhydrol.2015.02.048

    Article  Google Scholar 

  49. Pandey K, Kumar S, Malik A, Kuriqi A (2020) Artificial neural network optimized with a genetic algorithm for seasonal groundwater table depth prediction in Uttar Pradesh, India. Sustainability (Switzerland) 12:1–24. https://doi.org/10.3390/su12218932

    Article  Google Scholar 

  50. Ping J, Yu Q, Ma X (2013) A combination model of chaos, wavelet and support vector machine predicting groundwater levels and its evaluation using three comprehensive quantifying techniques. Inf Technol J 12:3158–3163. https://doi.org/10.3923/itj.2013.3158.3163

    Article  Google Scholar 

  51. Rajaee T, Ebrahimi H, Nourani V (2019) A review of the artificial intelligence methods in groundwater level modeling. J Hydrol 572:336–351. https://doi.org/10.1016/j.jhydrol.2018.12.037

    Article  Google Scholar 

  52. Reinecke R, Wachholz A, Mehl S, Foglia L, Niemann C, Döll P (2020) Importance of spatial resolution in global groundwater modeling. Groundwater 58:363–376. https://doi.org/10.1111/gwat.12996

    Article  Google Scholar 

  53. Rezaie-balf M, Naganna SR, Ghaemi A, Deka PC (2017) Wavelet coupled MARS and M5 Model Tree approaches for groundwater level forecasting. J Hydrol. https://doi.org/10.1016/j.jhydrol.2017.08.006

    Article  Google Scholar 

  54. Sahoo S, Russo TA, Elliott J, Foster I (2017) Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S. Water Resour Res 53:3878–3895. https://doi.org/10.1002/2016WR019933

    Article  Google Scholar 

  55. Salmasi F, Azamathulla HM (2013) Determination of optimum relaxation coefficient using finite difference method for groundwater flow. Arab J Geosci 6(9):3409–3415. https://doi.org/10.1007/s12517-012-0591-9

    Article  Google Scholar 

  56. Seifi A, Ehteram M, Singh VP, Mosavi A (2020) Modeling and uncertainty analysis of groundwater level using six evolutionary optimization algorithms hybridized with ANFIS, SVM, and ANN. Sustainability (Switzerland). https://doi.org/10.3390/SU12104023

    Article  Google Scholar 

  57. Sharafati A, Asadollah SBHS, Neshat A (2020) A new artificial intelligence strategy for predicting the groundwater level over the Rafsanjan aquifer in Iran. J Hydrol 591:125468. https://doi.org/10.1016/j.jhydrol.2020.125468

    Article  Google Scholar 

  58. Shin MJ, Moon SH, Kang KG, Moon DC, Koh HJ (2020) Analysis of groundwater level variations caused by the changes in groundwater withdrawals using long short-term memory network. Hydrology. https://doi.org/10.3390/HYDROLOGY7030064

    Article  Google Scholar 

  59. Shiri J, Kisi O, Yoon H, Lee KK, Hossein Nazemi A (2013) Predicting groundwater level fluctuations with meteorological effect implications-A comparative study among soft computing techniques. Comput Geosci 56:32–44. https://doi.org/10.1016/j.cageo.2013.01.007

    Article  Google Scholar 

  60. Su J, Zhang H (2006) A fast decision tree learning algorithm. Proc Natl Conf Artif Intell 1:500–505

    Google Scholar 

  61. Sujay Raghavendra N, Deka PC (2015) Forecasting monthly groundwater level fluctuations in coastal aquifers using hybrid Wavelet packet–Support vector regression. Cogent Eng. https://doi.org/10.1080/23311916.2014.999414

    Article  Google Scholar 

  62. Sun AY (2013) Predicting groundwater level changes using GRACE data. Water Resour Res 49:5900–5912. https://doi.org/10.1002/wrcr.20421

    Article  Google Scholar 

  63. Sun Y, Wendi D, Kim DE, Liong SY (2016) Technical note: Application of artificial neural networks in groundwater table forecasting-a case study in a Singapore swamp forest. Hydrol Earth Syst Sci 20:1405–1412. https://doi.org/10.5194/hess-20-1405-2016

    Article  Google Scholar 

  64. Supreetha BS, Shenoy N, Nayak P (2020) Lion algorithm-optimized long short-term memory network for groundwater level forecasting in Udupi District, India. Appl Comput Intell Soft Comput. https://doi.org/10.1155/2020/8685724

    Article  Google Scholar 

  65. Suryanarayana C, Sudheer C, Mahammood V, Panigrahi BK (2014) An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India. Neurocomputing 145:324–335. https://doi.org/10.1016/j.neucom.2014.05.026

    Article  Google Scholar 

  66. Taormina R, Chau KW, Sethi R (2012) Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Eng Appl Artif Intell 25:1670–1676. https://doi.org/10.1016/j.engappai.2012.02.009

    Article  Google Scholar 

  67. Tapoglou E, Karatzas GP, Trichakis IC, Varouchakis EA (2014) A spatio-temporal hybrid neural network-Kriging model for groundwater level simulation. J Hydrol 519:3193–3203. https://doi.org/10.1016/j.jhydrol.2014.10.040

    Article  Google Scholar 

  68. Tapoglou E, Trichakis IC, Dokou Z, Nikolos IK, Karatzas GP (2014) Prévision du niveau des eaux souterraines dans les scénarios de changement climatique utilisant un réseau de neurones artificiels formé avec optimisation par essaim de particules. Hydrol Sci J 59:1225–1239. https://doi.org/10.1080/02626667.2013.838005

    Article  Google Scholar 

  69. Tubau I, Vázquez-Suñé E, Carrera J, Valhondo C, Criollo R (2017) Quantification of groundwater recharge in urban environments. Sci Total Environ 592:391–402. https://doi.org/10.1016/j.scitotenv.2017.03.118

    Article  Google Scholar 

  70. Üneş F et al (2018) Determination of groundwater level fluctuations by artificial neural networks 3:35–42

  71. Üneş F et al (2017) Estimation of groundwater level using artificial neural networks: a case study of Hatay-Turkey. In: Proccedings of 10th international conference "environmental engineering". VGTU Technika. https://doi.org/10.3846/enviro.2017.092

  72. Vetrivel N, Elangovan K (2016) Comparative prediction of groundwater fluctuation by CWTFT-ANFIS and WT-ANFIS. Indian J Sci Technol. https://doi.org/10.17485/ijst/2016/v9i44/100252

    Article  Google Scholar 

  73. Vijayakumar CR, Balasubramani DP, Azamathulla HM (2021) Assessment of groundwater quality and human health risk associated with chromium exposure in the industrial area of Ranipet, Tamil Nadu, India. J Water Sanitat Hygiene Dev. https://doi.org/10.2166/washdev.2021.260

    Article  Google Scholar 

  74. Wen X, Feng Q, Deo RC, Wu M, Si J (2017) Wavelet analysis-artificial neural network conjunction models for multi-scale monthly groundwater level predicting in an Arid Inland River Basin, northwestern China. Hydrol Res 48:1710–1729. https://doi.org/10.2166/nh.2016.396

    Article  Google Scholar 

  75. Wunsch A, Liesch T, Broda S (2018) Forecasting groundwater levels using nonlinear autoregressive networks with exogenous input (NARX). J Hydrol 567:743–758. https://doi.org/10.1016/j.jhydrol.2018.01.045

    Article  Google Scholar 

  76. Yadav B, Ch S, Mathur S, Adamowski J (2017) Assessing the suitability of extreme learning machines (ELM) for groundwater level prediction. J Water Land Dev 32:103–112. https://doi.org/10.1515/jwld-2017-0012

    Article  Google Scholar 

  77. Yadav B, Gupta PK, Patidar N, Himanshu SK (2020) Ensemble modelling framework for groundwater level prediction in urban areas of India. Sci Total Environ 712:135539. https://doi.org/10.1016/j.scitotenv.2019.135539

    Article  Google Scholar 

  78. Yoon H, Hyun Y, Ha K, Lee KK, Kim GB (2016) A method to improve the stability and accuracy of ANN- and SVM-based time series models for long-term groundwater level predictions. Comput Geosci 90:144–155. https://doi.org/10.1016/j.cageo.2016.03.002

    Article  Google Scholar 

  79. Yoon H, Jun SC, Hyun Y, Bae GO, Lee KK (2011) A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J Hydrol 396:128–138. https://doi.org/10.1016/j.jhydrol.2010.11.002

    Article  Google Scholar 

  80. Zhang J, Zhang X, Niu J, Hu BX, Soltanian MR, Qiu H, Yang L (2019) Prediction of groundwater level in seashore reclaimed land using wavelet and artificial neural network-based hybrid model. J Hydrol 577:123948. https://doi.org/10.1016/j.jhydrol.2019.123948

    Article  Google Scholar 

  81. Zhao Y, Li Y, Zhang L, Wang Q (2016) Groundwater level prediction of landslide based on classification and regression tree. Geodesy Geodyn 7:348–355. https://doi.org/10.1016/j.geog.2016.07.005

    Article  Google Scholar 

  82. Zhou T, Wang F, Yang Z (2017) Comparative analysis of ANN and SVM models combined with wavelet preprocess for groundwater depth prediction. Water (Switzerland) 9:781. https://doi.org/10.3390/w9100781

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Innovation & Research Management Center (iRMC) of Universiti Tenaga Nasional for its technical and financial support provided under grant code RJO10517844/088 by the Innovation & Research Management Center (iRMC), Universiti Tenaga Nasional.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Najah Ahmed.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osman, A.I.A., Ahmed, A.N., Huang, Y.F. et al. Past, Present and Perspective Methodology for Groundwater Modeling-Based Machine Learning Approaches. Arch Computat Methods Eng 29, 3843–3859 (2022). https://doi.org/10.1007/s11831-022-09715-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-022-09715-w

Navigation