Skip to main content
Log in

Computational Methods of Erosion Wear in Centrifugal Pump: A State-of-the-Art Review

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Erosion wear of the centrifugal pump components is considered one of the principal hurdles for pumping and transporting the particle-fluid flow in the hydraulic system. Although the particles in the multiphase flow can behave like a continuum fluid at times, their irregular pattern cannot be predicted by traditional continuum-based modeling. The computational numerical methods have been extensively used in engineering, where its application is starting to achieve popularity in hydraulic pumping systems. As a result, the Discrete Phase Modeling (DPM) or the Discrete Element Method (DEM) integrated with Computational Fluid Dynamics (CFD) is considered a promising numerical technique that can model the multiphase flow by tracking the movement of each particle in the fluid flow accurately. Further, the CFD predicts and provides the characteristics of the fluid flow field via transport phenomena equations of mass, momentum, and energy. This work reviews the current strategies and the existing applications of the computational modeling approach for predicting and locating the erosion wear in the centrifugal pumps. It mainly represents three principal aspects: the concepts of a centrifugal pump with the erosion wear problem, the modeling approaches of particle-fluid motion including the turbulence and the wear models used in the hydraulic systems, and the computational methodologies for modeling the fluid-particle coupling and their applications for predicting the erosion wear in the centrifugal pumps. The existing published literature indicates that computational numerical modeling is a promising technique to predict and locate the erosion wear in the centrifugal pump components. The collected data could be benefiting from developing and optimizing the pump design and the operating conditions. The main findings are discussed and summarized as a part of the review, where future developments and challenges are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(A\) :

Contact area between particles and flow

\({A}_{face}\) :

Unit area of the surface

\(a\) :

Separation distance between particles

\({B}_{h}\) :

Brinell’s hardness number of wall material

\({C}_{D}\) :

Particle drag correlation

\(C\) :

Empirical constant

\({d}_{p}\) :

Particle diameter

\({E}_{w}\) :

Erosion wear rate

\({D}_{\omega }\) :

Cross-diffusion term

\({d}^{^{\prime}}\) :

Particle reference diameter

\({E}_{w}\) :

Erosion wear rate

\({E}_{i}\) :

Young's modulus of particle i

\({E}_{j}\) :

Young's modulus of particle j

\({E}^{*}\) :

Equivalent Young's modulus

\({E}_{c}\) :

Wear due to cutting

\({E}_{D}\) :

Wear due to deformation

\(F\) :

Particle sharpness factor

\({F}_{drag}\) :

Fluid drag force

\({F}_{m}\) :

Magnus force

\({F}_{pg}\) :

Fluid-particle interaction forces

\({F}_{n}\) :

Applied normal load

\({F}_{f}\) :

Force of the fluid phase

\({F}_{p}\) :

Body force of the particle phase

\({F}_{Lf}\) :

Fluid lift force

\({F}_{Lp}\) :

Saffman's lift force

\({F}_{vmf}\) :

Fluid virtual mass force per unit mass

\({F}_{vmp}\) :

Particle virtual mass force per unit mass

\({F}_{C}\) :

Contact force

\({F}_{{i}_{adh}}^{n}\) :

Normal adhesive contact force

\({F}_{ij}^{n}\) :

Normal contact force on a particle

\({T}_{f}\) :

Torque produced by fluid

\(t\) :

Time

\({T}_{C}\) :

Contact torque

\({u}_{p}\) :

Particle translation velocity

\({U}_{p}\) :

Relative impact velocity of the particle

\({u}_{f}\) :

Average velocity component of the fluid

\({v}^{^{\prime}}\) :

Particle reference velocity

\({\nu }_{i}\)y:

Poisson's ratios of the of particle i

\({\nu }_{j}\) :

Poisson's ratios of the of particle j

\({\nu }_{n}\) :

Normal velocity of the particle

\({\nu }_{t}\) :

Tangential velocity of the particle

\({V}_{w}\) :

Volume of the removed material

\(v\) :

Velocity

\(W\) :

Wear rate

\({Y}_{M}\) :

Fluctuating turbulence to the dissipation rate

\({Y}_{k}\) :

Dissipation of k due to turbulence

\({Y}_{\omega }\) :

Dissipation of ω due to turbulence

\({\mu }_{f}\) :

Turbulent fluid viscosity

\({F}_{i}^{f}\) :

Interaction force of the fluid on the particle i

g:

Gravitational acceleration

\(G\) :

Mean rate of the strain tensor

\({G}_{k}\) :

Generation of turbulence kinetic energy

\({G}_{b}\) :

Generation of turbulence due to buoyancy

\({G}_{\omega }\) :

Generation of

\({H}_{V}\) :

Vickers hardness of the wall surface

\({I}_{p}\) :

Moment of inertia of the particle

\(k\) :

Interphase exchange coefficient

\(K\) :

Particle vertical to horizontal force ratio

\({K}_{W}\) :

Wear constant associated with the material

\({k}_{1}\) :

Function of particle properties

\({k}_{2}\) :

Velocity constant

\({k}_{3}\) :

Particle size constant

\(L\) :

Turbulent boundary or the mixing length

\({m}_{p}\) :

Particle mass

\(\dot{{m}_{p}}\) :

Mass flow rate of the particles

\(\widehat{{n}_{c}}\) :

Unit vector in the normal contact

\(p\) :

Plastic flow stress of the eroded material

\(P\) :

Pressure shared by two phases

\({P}_{max}\) :

Maximum liquid bridge tensile force

\({r}^{*}\) :

Equivalent particle radius

\({r}_{i}\) :

Radius of particle i

\({r}_{j}\) :

Radius of particle j

\({Re}_{p}\) :

Particle Reynolds number

\({R}_{\epsilon }\) :

Dissipation of swirl effect on turbulence

\({S}_{L}\) :

yFriction or sliding distance

\({S}^{n}\) :

Normal overlapping

\({s}^{t}\) :

Tangential relative displacement

\({s}_{max}^{t}\) :

Maximum relative tangential displacement

\({\mu }_{t}\) :

Eddy viscosity

\({\mu }_{{f}_{eff}}\) :

Fluid effective turbulent viscosity

\(\tau\) :

Stress tensor

\({\tau }_{f}\) :

Viscous stress tensor

\({\rho }_{f}\) :

Fluid density

\({\rho }_{m}\) :

Density of the pump surface material

\(\varphi\) :

Ratio of depth of contact to the depth of cut

\({\omega }_{p}\) :

Particle rotational velocity

\(\eta\) :

Damping ratio

\({\eta }^{t}\) :

Tangential damping ratio

\(\Gamma\) :

Surface energy

\({\Gamma }_{k}\) :

Effective diffusivity of k

\({\Gamma }_{\omega }\) :

Effective diffusivity of ω

\({\sigma }_{k}\) :

Turbulent Prandtl numbers for k

\({\sigma }_{\epsilon }\) :

Turbulent Prandtl numbers for ϵ

\({\alpha }_{f}\) :

Fluid volume fraction

\({\alpha }_{p}\) :

Particle volume fraction

\({\alpha }_{k}\) :

Inverse Prandtl number for k

\({\alpha }_{\epsilon }\) :

Inverse Prandtl number for ϵ

References

  1. Bala A (2011) Modeling and simulation of centrifugal pump. Thapar University

  2. Kan K, Chen H, Zheng Y et al (2021) Transient characteristics during power-off process in a shaft extension tubular pump by using a suitable numerical model. Renew Energy 164:109–121. https://doi.org/10.1016/j.renene.2020.09.001

    Article  Google Scholar 

  3. Bachus L, Custodio A (2015) Know and understand centrifugal pumps, 1st ed. Elsevier Ltd., Boulevard, Langford Lane, Kidlington, Oxford OX5 lGB, UK

  4. Karassik IJ, Krutzsch W, Fraser WH, Messina JP (2001) Pump Handbook, 3rd ed. McGraw-Hill Companies, Inc.

  5. Noon AA, Kim MH (2016) Erosion wear on centrifugal pump casing due to slurry flow. Wear 364–365:103–111. https://doi.org/10.1016/j.wear.2016.07.005

    Article  Google Scholar 

  6. Li Y, Zeng X, Lv W, He Z (2020) Centrifugal pump wear for solid–liquid two-phase flows based on computational fluid dynamics–discrete element method coupling. Adv Mech Eng 12:1–17. https://doi.org/10.1177/1687814020937951

    Article  Google Scholar 

  7. Krüger S, Martin N, Dupont P (2010) Assessment Of wear erosion in pump impellers. In: Proceedings of the 26th International Pump Users Symposium. Turbomachinery Laboratory, Texas A&M University, pp 51–56

  8. Güner M, Özbayer MM (2019) Wear and its effects in centrifugal pumps. YYU J Agric Sci 29:569–582

    Google Scholar 

  9. Huang S, Su X, Qiu G (2015) Transient numerical simulation for solid-liquid flow in a centrifugal pump by DEM-CFD coupling. Eng Appl Comput Fluid Mech 9:411–418. https://doi.org/10.1080/19942060.2015.1048619

    Article  Google Scholar 

  10. DOE (1993) Fundamentals Of Pumps, (Vol. 1) o. U.S. Department of Energy Washington, D.C. 20585, USA

  11. Thin KC, Khaing MM, Aye KM (2008) Design and performance analysis of centrifugal pump. World Acad Sci Eng Technol 22:422–429

    Google Scholar 

  12. Kumar A (2021) Pump: Definition, types, advantages, disadvantages, applications. https://learnmechanical.com/pump/

  13. Sarkar S (2017) Lecture on Pump. In: Dep. Mech. Eng. Indian Sch. Mines Dhanbad. https://www.iitism.ac.in/~shibayan/MMC16101FluidMachines/MMC16101_centrifugalPump_01.pdf

  14. Lyczkowski RW, Bouillard JX (2002) State-of-the-art review of erosion modeling in fluid/solids systems. Prog Energy Combust Sci 28:543–602. https://doi.org/10.1016/S0360-1285(02)00022-9

    Article  Google Scholar 

  15. Addie GR, Roudnev AS, Sellgren A (2007) The new ANSI/HI centrifugal slurry pump standard. J South African Inst Min Metall 107:403–409

    Google Scholar 

  16. Messa GV, Malavasi S (2014) Numerical prediction of particle distribution of solid-liquid slurries in straight pipes and bends. Eng Appl Comput Fluid Mech 8:356–372. https://doi.org/10.1080/19942060.2014.11015521

    Article  Google Scholar 

  17. Makwana M, Sarkar S (2017) Wear in centrifugal slurry pump casing. Int J Adv Res Sci Eng 6:78–84

    Google Scholar 

  18. Azimian M, Bart HJ (2015) Erosion investigations by means of a centrifugal accelerator erosion tester. Wear 328–329:249–256. https://doi.org/10.1016/j.wear.2015.02.002

    Article  Google Scholar 

  19. Shi B, Pan J, Wu L et al (2020) A prediction method of wear for volute casing of a centrifugal slurry pump. Geofluids. https://doi.org/10.1155/2020/8847087

    Article  Google Scholar 

  20. Ojala N, Valtonen K, Antikainen A et al (2016) Wear performance of quenched wear resistant steels in abrasive slurry erosion. Wear 354–355:21–31. https://doi.org/10.1016/j.wear.2016.02.019

    Article  Google Scholar 

  21. Javaheri V, Porter D, Kuokkala V (2018) Slurry erosion of steel – Review of tests, mechanisms and materials. Wear 408–409:248–273. https://doi.org/10.1016/j.wear.2018.05.010

    Article  Google Scholar 

  22. Ojala N, Valtonen K, Kivikytö-Reponen P et al (2015) High speed slurry-pot erosion wear testing with large abrasive particles. Finnish J Tribol 33:36–44

    Google Scholar 

  23. Hankeln F, Riedelbauch S (2019) Comparison of different models for determination of erosion wear in centrifugal pumps. In: 13th European Turbomachinery Conference on Turbomachinery Fluid Dynamics and Thermodynamics. Lausanne, Switzerland, pp 1–12

  24. Finne I (1960) Erosion of surfaces by solid particles. Wear 3:87–103. https://doi.org/10.1016/0043-1648(60)90055-7

    Article  Google Scholar 

  25. Pereira GC, de Souza FJ, de Moro Martins DA (2014) Numerical prediction of the erosion due to particles in elbows. Powder Technol 261:105–117. https://doi.org/10.1016/j.powtec.2014.04.033

    Article  Google Scholar 

  26. Ghenaiet A (2015) Prediction of erosion induced by solid particles in a water turbine. In: 11th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, ETC 2015. pp 1–13

  27. Biglarian M, MomeniLarimi M, Ganji B, Ranjbar A (2019) Prediction of erosive wear locations in centrifugal compressor using CFD simulation and comparison with experimental model. J Brazilian Soc Mech Sci Eng 41:1–10. https://doi.org/10.1007/s40430-019-1610-5

    Article  Google Scholar 

  28. Clark HMI, Wong KK (1995) Impact angle, particle energy and mass loss in erosion by dilute slurries. Wear 186–187:454–464. https://doi.org/10.1016/0043-1648(95)07120-2

    Article  Google Scholar 

  29. Roco MC (1990) Wear mechanisms in centrifugal slurry pumps. Corrosion 46:424–431. https://doi.org/10.5006/1.3585128

    Article  Google Scholar 

  30. Arabnejad H, Mansouri A, Shirazi SA, McLaury BS (2015) Development of mechanistic erosion equation for solid particles. Wear 332–333:1044–1050. https://doi.org/10.1016/j.wear.2015.01.031

    Article  Google Scholar 

  31. Parsi M, Najmi K, Naja F et al (2014) A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications. J Nat Gas Sci Eng 21:850–873. https://doi.org/10.1016/j.jngse.2014.10.001

    Article  Google Scholar 

  32. Grötzbach M (1996) Solid particle erosion and erosion-corrosion of materials. ASM International, Materials Park

    Google Scholar 

  33. Tilly GP (1973) A two stage mechanism of ductile erosion. Wear 23:87–96

    Article  Google Scholar 

  34. Levy AV, Chik P (1983) The effects of erodent erosion of steel composition and shape on the erosion of steel. Wear 89:151–162

    Article  Google Scholar 

  35. Liebhard M, Levy AV (1991) Effect of erodent particle characteristics on the erosion of metals. Wear 1:381–390

    Article  Google Scholar 

  36. Sinha SL, Dewangan SK, Sharma A (2017) A review on particulate slurry erosive wear of industrial materials: In context with pipeline transportation of mineral−slurry. Part Sci Technol 35:103–118. https://doi.org/10.1080/02726351.2015.1131792

    Article  Google Scholar 

  37. Akbarzadeh E, Elsaadawy E, Sherik AM et al (2012) The solid particle erosion of 12 metals using magnetite erodent. Wear 282–283:40–51. https://doi.org/10.1016/j.wear.2012.01.021

    Article  Google Scholar 

  38. Bitter JGA (1963) A study of erosion phenomena part II. Wear 6:5–21. https://doi.org/10.1016/0043-1648(63)90003-6

    Article  Google Scholar 

  39. Zolfagharnasab MH, Salimi M, Zolfagharnasab H et al (2021) A novel numerical investigation of erosion wear over various 90-degree elbow duct sections. Powder Technol 380:1–17. https://doi.org/10.1016/j.powtec.2020.11.059

    Article  Google Scholar 

  40. Mansouri A (2016) A combined Cfd-experimental method for developing an erosion equation for both gas-sand and liquid-sand flows. The University of Tulsa

  41. Cheng XR, Li RN, Gao Y, Guo WL (2013) Numerical research on the effects of impeller pump-out vanes on axial force in a solid-liquid screw centrifugal pump. In: 6th international conference on pumps and fans with com- pressors and wind turbines-IOP Conference Series: Materials Science and Engineering. Tsinghua University, Beijing, China

  42. Chochua G, Koch JM, Sorokes JM (2005) Analytical and computational study of radial loads in volutes and collectors. In: Proceedings of the ASME Turbo Expo:Power for Land, Sea and Air. Reno-Tahoe, Nevada, USA, pp 871–879

  43. Fang J, Ling X, Sang ZF (2013) Solid suspension in stirred tank equipped with multi-side-entering agitators. Eng Appl Comput Fluid Mech 7:282–294. https://doi.org/10.1080/19942060.2013.11015471

    Article  Google Scholar 

  44. Wu B, Wang XL, Liu H, Xu HL (2015) Numerical simulation and analysis of solid-liquid two-phase three-dimensional unsteady flow in centrifugal slurry pump. J Cent South Univ 22:3008–3016. https://doi.org/10.1007/s11771-015-2837-7

    Article  Google Scholar 

  45. Zhang C, Xu S, Yu P (2020) Numerical analysis of the effects of gas-phase properties on the internal characteristics and wear in a centrifugal pump. Aquac Eng 91:102126. https://doi.org/10.1016/j.aquaeng.2020.102126

    Article  Google Scholar 

  46. Peng G, Fan F, Zhou L et al (2020) Optimal hydraulic design to minimize erosive wear in a centrifugal slurry pump impeller. Eng Fail Anal. https://doi.org/10.1016/j.engfailanal.2020.105105

    Article  Google Scholar 

  47. Norouzi hamid reza, Zarghami R, Sotudeh‐gharebagh R, Mostoufi N (2016) Coupled CFD-DEM modeling : formulation, implementation and application to multiphase flows

  48. El-Emam MA, Zhou L, Shi W et al (2021) Theories and applications of CFD – DEM coupling approach for granular flow : a review. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-021-09568-9

    Article  MathSciNet  Google Scholar 

  49. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29:47–65. https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  50. Dewicki G (2003) Bulk material handling and processing – numerical techniques and simulation of granular material. Bulk Solids Handl Int J Storing Handl Bulk Mater 23:110–113

    Google Scholar 

  51. Zhu HP, Zhou ZY, Yang RY, Yu AB (2007) Discrete particle simulation of particulate systems: theoretical developments. Chem Eng Sci 62:3378–3396. https://doi.org/10.1016/j.ces.2006.12.089

    Article  Google Scholar 

  52. Boac JM, Ambrose RPK, Casada ME et al (2014) Applications of discrete element method in modeling of grain postharvest operations. Food Eng Rev 6:128–149. https://doi.org/10.1007/s12393-014-9090-y

    Article  Google Scholar 

  53. Zhu HP, Zhou ZY, Yang RY, Yu AB (2008) Discrete particle simulation of particulate systems: a review of major applications and findings. Chem Eng Sci 63:5728–5770. https://doi.org/10.1016/j.ces.2008.08.006

    Article  Google Scholar 

  54. Deen NG, Van Sint AM, Van der Hoef MA, Kuipers JAM (2007) Review of discrete particle modeling of fluidized beds. Chem Eng Sci 62:28–44. https://doi.org/10.1016/j.ces.2006.08.014

    Article  Google Scholar 

  55. Tsuji Y, Kawaguchi T, Tanaka T (1993) Discrete particle simulation of two-dimensional fluidized bed. Powder Technol 77:79–87. https://doi.org/10.1016/0032-5910(93)85010-7

    Article  Google Scholar 

  56. Huang S, Huang J, Guo J, Mo Y (2019) Study on wear properties of the flow parts in a centrifugal pump based on EDEM-fluent coupling. Processes. https://doi.org/10.3390/pr7070431

    Article  Google Scholar 

  57. Shen Z, Chu W (2018) Effect of particle parameters on erosion wear and performance of screw centrifugal pump. ASME Int Mech Eng Congr Expo Proc 7:1–9. https://doi.org/10.1115/IMECE201888586

    Article  Google Scholar 

  58. Peng GJ, Luo YY, Wang ZW (2015) Research on wear properties of centrifugal dredge pump based on liquid-solid two-phase fluid simulations. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/72/4/042048

    Article  Google Scholar 

  59. Pagalthivarthi KV, Gupta PK, Tyagi V, Ravi MR (2011) CFD prediction of erosion wear in centrifugal slurry pumps for dilute. J Comput Multiph Flows 3:225–245

    Article  Google Scholar 

  60. González J, Fernández J, Blanco E, Santolaria C (2002) Numerical simulation of the dynamic effects due to impeller-volute interaction in a centrifugal pump. J Fluids Eng Trans ASME 124:348–355. https://doi.org/10.1115/1.1457452

    Article  Google Scholar 

  61. Cheah KW, Lee TS, Winoto SH, Zhao ZM (2007) Numerical flow simulation in a centrifugal pump at design and off-design conditions. Int J Rotating Mach 2007:1–8. https://doi.org/10.1155/2007/83641

    Article  Google Scholar 

  62. Jafarzadeh B, Hajari A, Alishahi MM, Akbari MH (2011) The flow simulation of a low-specific-speed high-speed centrifugal pump. Appl Math Model 35:242–249. https://doi.org/10.1016/j.apm.2010.05.021

    Article  MATH  Google Scholar 

  63. Muttalli SR, Agrawal S, Warudkar H (2014) CFD Simulation of Centrifugal Pump Impeller Using ANSYS-CFX. Int J Innov Res Sci Eng Technol 03:15553–15561. https://doi.org/10.15680/ijirset.2014.0308066

  64. Lei T, Shan ZB, Liang CS et al (2014) Numerical simulation of unsteady cavitation flow in a centrifugal pump at off-design conditions. Proc Inst Mech Eng Part C J Mech Eng Sci 228:1994–2006. https://doi.org/10.1177/0954406213514573

    Article  Google Scholar 

  65. Yousefi H, Noorollahi Y, Tahani M et al (2019) Numerical simulation for obtaining optimal impeller’s blade parameters of a centrifugal pump for high-viscosity fluid pumping. Sustain Energy Technol Assess 34:16–26. https://doi.org/10.1016/j.seta.2019.04.011

    Article  Google Scholar 

  66. Wang L, Liu H, Wang K et al (2019) Numerical simulation of the sound field of a five-stage centrifugal pump with different turbulence models. Water. https://doi.org/10.3390/w11091777

    Article  Google Scholar 

  67. Wang L, Lu J, Liao W et al (2019) Numerical simulation of the tip leakage vortex characteristics in a semi-open centrifugal pump. Appl Sci. https://doi.org/10.3390/app9235244

    Article  Google Scholar 

  68. Gobran MH, Ibrahim MM, Shaltout RE, Shalaby MA (2019) Numerical Simulation of Centrifugal Pump and Effect of Impeller Geometry on Its Performance. Eng Appl Sci 4:21–29 https://doi.org/10.11648/j.eas.20190402.11

  69. Wang C, He X, Shi W et al (2019) Numerical study on pressure fluctuation of a multistage centrifugal pump based on whole flow field. AIP Adv. https://doi.org/10.1063/1.5049196

    Article  Google Scholar 

  70. Ennouri M, Kanfoudi H, Taher ABH, Zgolli R (2019) Numerical flow simulation and cavitation prediction in a centrifugal pump using an SST-SAS turbulence model. J Appl Fluid Mech 12:25–39 https://doi.org/10.29252/jafm.75.253.28771

  71. Zhang N, Jiang J, Gao B et al (2020) Numerical analysis of the vortical structure and its unsteady evolution of a centrifugal pump. Renew Energy 155:748–760. https://doi.org/10.1016/j.renene.2020.03.182

    Article  Google Scholar 

  72. Rosa HMP, Emerick BS (2020) CFD simulation on centrifugal pump impeller with splitter blades. Rev Bras Eng Agric e Ambient 24:3–7. https://doi.org/10.1590/1807-1929/agriambi.v24n1p3-7

    Article  Google Scholar 

  73. Loth E, Tryggvason G, Tsuji Y et al. (2006) Overview of Multiphase Modeling. Taylor & Francis Group, LLC

  74. Ideen Sadrehaghighi (2021) Multiphase Flow

  75. Derakhshan S, Riahi F, Bashiri M (2017) Efficiency improvement of a rotary gas separator by parametric study and gas/liquid-flow analysis. SPE Prod Oper Soc Pet Eng. https://doi.org/10.2118/187966-pa

    Article  Google Scholar 

  76. Derakhshan S, Bashiri M (2018) Investigation of an efficient shape optimization procedure for centrifugal pump impeller using eagle strategy algorithm and ANN (case study: slurry flow). Struct Multidiscip Optim 58:459–473. https://doi.org/10.1007/s00158-018-1897-3

    Article  Google Scholar 

  77. Patankar NA, Joseph DD (2001) Modeling and numerical simulation of particulate fows by the Eulerian-Lagrangian approach. Int J Multiph Flow 27:1659–1684

    Article  Google Scholar 

  78. Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics: the finite volume method, Fluid flow handbook., 2nd ed. Wiley, NY

  79. Samantaray SK, Mohapatra SS, Munshi B (2018) Experimental findings and analysis of terminal velocity and drag coefficient of Raschig Ring in vertical and inclined channel. Powder Technol 340:440–448. https://doi.org/10.1016/j.powtec.2018.09.030

    Article  Google Scholar 

  80. Ansys Fluent Inc. (2009) Turbulence. In: Ansys I, Ansys Europe L (eds) Ansys Fluent 12.0 Theory Guide, 12th ed. ANSYS, Inc, Canonsburg, PA, pp 1–58

  81. Pagalthivarthi KV, Gupta PK, Tyagi V, Ravi MR (2011) CFD predictions of dense slurry flow in centrifugal pump casings. Int J Mech Aerospace, Ind Mechatron Manuf Eng 5:538–550. https://doi.org/10.5281/zenodo.1330793

    Article  Google Scholar 

  82. Shokrian A, Mobli H, Akbarnia A et al (2018) Application an euler – euler multiphase-flow model for simulation flow in a centrifugal separator machine. Am J Fluid Dyn 8:112–115. https://doi.org/10.5923/j.ajfd.20180804.02

    Article  Google Scholar 

  83. Saffman PG (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22:385–400. https://doi.org/10.1017/S0022112065000824

    Article  MATH  Google Scholar 

  84. Saffman PG (1968) The lift on a small sphere in a slow shear flow. J Fluid Mech 31:624–624. https://doi.org/10.1017/S0022112068999990

    Article  Google Scholar 

  85. Zhou L, Deshpande K, Zhang X, Agarwal RK (2020) Process simulation of Chemical Looping Combustion using ASPEN plus for a mixture of biomass and coal with various oxygen carriers. Energy 195:116955. https://doi.org/10.1016/j.energy.2020.116955

    Article  Google Scholar 

  86. Ariyaratne WKH, Manjula EVPJ, Ratnayake C, Melaaen MC (2016) CFD approaches for modeling gas-solids multiphase flows - a review. In: Proceedings of the 9th EUROSIM & the 57th SIMS. Oulu, Finland, pp 680–686

  87. Liu Y, Hinrichsen O (2014) CFD modeling of bubbling fluidized beds using OpenFOAM®: Model validation and comparison of TVD differencing schemes. Comput Chem Eng 69:75–88. https://doi.org/10.1016/j.compchemeng.2014.07.002

    Article  Google Scholar 

  88. Hadžiahmetović H, Hodžić N, Kahrimanović D, Džaferović E (2014) Computational fluid dynamics (CFD) based erosion prediction model in elbows. Teh Vjesn 21:275–282

    Google Scholar 

  89. Abdulla A (2011) Estimating erosion in oil and gas pipe line due to sand presence. Blekinge Institute of Technology Karlskrona, Sweden

    Google Scholar 

  90. Hirche D, Birkholz F, Hinrichsen O (2018) A hybrid eulerian-eulerian-lagrangian model for gas-solid simulations. Chem Eng J. https://doi.org/10.1016/j.cej.2018.08.129

    Article  Google Scholar 

  91. Sun XY, Cao XW (2021) Impact of inter-particle collision on elbow erosion based on DSMC-CFD method. Pet Sci. https://doi.org/10.1007/s12182-021-00550-5

    Article  Google Scholar 

  92. El-Emam MA, Zhou L, Shi W, Han C (2021) Performance evaluation of standard cyclone separators by using CFD – DEM simulation with realistic bio-particulate matter. Powder Technol 385:357–374. https://doi.org/10.1016/j.powtec.2021.03.006

    Article  Google Scholar 

  93. Yang C, Mao Z-S (2014) Multiphase stirred reactors

  94. Gray JMNT (2018) Particle segregation in dense granular flows. Annu Rev Fluid Mech 50:407–433. https://doi.org/10.1146/annurev-fluid-122316-045201

    Article  MathSciNet  MATH  Google Scholar 

  95. Stone L, Hastie D, Zigan S (2019) Using a coupled CFD – DPM approach to predict particle settling in a horizontal air stream. Adv Powder Technol 30:869–878. https://doi.org/10.1016/j.apt.2019.02.001

    Article  Google Scholar 

  96. Qian Z, Wang Z, Zhang K et al (2014) Analysis of silt abrasion and blade shape optimization in a centrifugal pump. Proc Inst Mech Eng Part A J Power Energy 228:585–591. https://doi.org/10.1177/0957650914530294

    Article  Google Scholar 

  97. Morsi SA, Alexander AJ (1972) An investigation of particle trajectories in two-phase flow systems. J Fluid Mech 55:193–208. https://doi.org/10.1017/S0022112072001806

    Article  MATH  Google Scholar 

  98. Huilin L, Yurong H, Gidaspow D (2003) Hydrodynamic modelling of binary mixture in a gas bubbling fluidized bed using the kinetic theory of granular flow. Chem Eng Sci 58:1197–1205. https://doi.org/10.1016/S0009-2509(02)00635-8

    Article  Google Scholar 

  99. Messa GV, Mandelli S, Malavasi S (2019) Hydro-abrasive erosion in Pelton turbine injectors: a numerical study. Renew Energy 130:474–488. https://doi.org/10.1016/j.renene.2018.06.064

    Article  Google Scholar 

  100. Schiller L, Naumann AZ (1933) Ueber die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Ver Deut Ing 77:317–320

    Google Scholar 

  101. Lei HM, Xiao YX, Chen FN et al (2018) Numerical simulation of solid-liquid two-phase flow in a centrifugal pump with different wear blades degree. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/163/1/012027

    Article  Google Scholar 

  102. Cai X, Zhou SP, Li S (2016) Study on the influence of back blade shape on the wear characteristics of centrifugal slurry pump. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/129/1/012058

    Article  Google Scholar 

  103. Tao Y, Yuan S, Liu J et al. (2016) Numerical simulation and test research on the wear of back blades in slurry pumps. In: American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM. Washington, DC, USA, pp 1–7

  104. Peng G, Huang X, Zhou L et al (2020) Solid-liquid two-phase flow and wear analysis in a large-scale centrifugal slurry pump. Eng Fail Anal 114:104602. https://doi.org/10.1016/j.engfailanal.2020.104602

    Article  Google Scholar 

  105. Gidaspow D, Bezburuah R, Ding J (1992) Hydrodynamics of circulating fluidized beds: Kinetic theory approach. In: 7th Fluidization Conference. Brisbane, Australia, pp 75–82

  106. Kloss C, Goniva C, Hager A et al (2012) Models, algorithms and validation for opensource DEM and CFD-DEM. Prog Comput Fluid Dyn 12:140–152. https://doi.org/10.1504/PCFD.2012.047457

    Article  MathSciNet  Google Scholar 

  107. Shen ZJ, Li RN, Han W et al (2016) The research on particle trajectory of solid-liquid two-phase flow and erosion predicting in screw centrifugal pump. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/129/1/012052

    Article  Google Scholar 

  108. Lai F, Zhu X, Xu X, Li G (2018) Erosion wear and performance simulation of centrifugal pumP. In: ASME 2018 Power Conference. ASME, Lake Buena Vista, FL, USA, pp 1–10

  109. Ansys Fluent Inc. (2017) Ansys Fluent Tutorial Guide, 18.0. Ansys, Inc, Canonsburg, PA

  110. Williams JR, Hocking G, Mustoe G (1985) The theoretical basis of the discrete element method. NUMETA ’85 Conference. Balkema, Rotterdam, pp 897–906

    Google Scholar 

  111. Akhshik S, Behzad M, Rajabi M (2015) CFD-DEM approach to investigate the effect of drill pipe rotation on cuttings transport behavior. J Pet Sci Eng 127:229–244. https://doi.org/10.1016/j.petrol.2015.01.017

    Article  Google Scholar 

  112. ESSS-Rocky (2018) Rocky-dem technical manual. In: Rocky E (ed) Models used in Rocky, 4.13. ESSS, Rio de Janeiro, Brazi, pp 3–11

  113. Di Renzo A, Di Maio FP (2004) Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem Eng Sci 59:525–541. https://doi.org/10.1016/j.ces.2003.09.037

    Article  Google Scholar 

  114. Deresiewicz H, Mindlin RD (1953) Elastic spheres in contact under varying oblique forces. J Appl Mech 20:327–344

    Article  MathSciNet  Google Scholar 

  115. Tsuji Y, Tanaka T, Ishida T (1992) Lagrangian numerical-simulation of plug flow of cohesionless particles in ahorizontal pipe. Powder Technol 71:239–250

    Article  Google Scholar 

  116. Nyembwe AM, Cromarty RD (2019) Simulation of the pressure drop across granulated mixtures using a coupled DEM – CFD model. Adv Powder Technol 30:85–97. https://doi.org/10.1016/j.apt.2018.10.010

    Article  Google Scholar 

  117. Sun J, Battaglia F, Subramaniam S (2006) Dynamics and structures of segregation in a dense, vibrating granular bed. Phys Rev E 74:061307. https://doi.org/10.1103/PhysRevE.74.061307

    Article  Google Scholar 

  118. Walton OR (1993) Numerical simulation of inelastic, frictional particle_particle interactions. In: Roco MC (ed) Particulate Two-Phase Flow, 2nd ed. Butterworth-Heinemann, adivision of Reed Publishing (USA) Inc., United States of America, pp 855–947

  119. Li H, Li Y, Gao F et al (2012) CFD-DEM simulation of material motion in air-and-screen cleaning device. Comput Electron Agric 88:111–119. https://doi.org/10.1016/j.compag.2012.07.006

    Article  Google Scholar 

  120. Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  121. El-Emam MA, Shi W, Zhou L (2019) CFD-DEM simulation and optimization of gas-cyclone performance with realistic macroscopic particulate matter. Adv Powder Technol 30:2686–2702. https://doi.org/10.1016/j.apt.2019.08.015

    Article  Google Scholar 

  122. Cundall PA (1988) Computer simulations of dense sphere assemblies. Micromechanics Granul Mater 20:113–123. https://doi.org/10.1016/B978-0-444-70523-5.50021-7

    Article  Google Scholar 

  123. Antypov D, Elliott JA (2011) On an analytical solution for the damped Hertzian spring. Europhys Lett. https://doi.org/10.1209/0295-5075/94/50004

    Article  Google Scholar 

  124. Sakai M, Takahashi H, Pain CC et al (2012) Study on a large-scale discrete element model for fine particles in a fluidized bed. Adv Powder Technol 23:673–681. https://doi.org/10.1016/j.apt.2011.08.006

    Article  Google Scholar 

  125. Johnson KL, Kendall K, Roberts AD (1971) Surface charge and the contact of elastic solids. Proceed R Soc London 324:301–313. https://doi.org/10.1088/0022-3727/6/9/304

    Article  Google Scholar 

  126. Horabik J, Molenda M (2016) Parameters and contact models for DEM simulations of agricultural granular materials: A review. Biosyst Eng 147:206–225. https://doi.org/10.1016/j.biosystemseng.2016.02.017

    Article  Google Scholar 

  127. Seville JPK, Willett CD, Knight PC (2000) Interparticle forces in fluidisation.pdf. Powder Technol 113:261–268. https://doi.org/10.1016/S0032-5910(00)00309-0

    Article  Google Scholar 

  128. De AE, Spogis N, Taranto OP, Silva MA (2019) Theoretical study of pneumatic separation of sugarcane bagasse particles. Biomass Bioenerg 127:105256. https://doi.org/10.1016/j.biombioe.2019.105256

    Article  Google Scholar 

  129. Posa A (2021) LES study on the influence of the diffuser inlet angle of a centrifugal pump on pressure fluctuations. Int J Heat Fluid Flow 89:108804. https://doi.org/10.1016/j.ijheatfluidflow.2021.108804

    Article  Google Scholar 

  130. Ye W, Geng C, Ikuta A et al (2021) Investigation on the impeller-diffuser interaction on the unstable flow in a mixed-flow pump using a modified partially averaged Navier-Stokes model. Ocean Eng 238:109756. https://doi.org/10.1016/j.oceaneng.2021.109756

    Article  Google Scholar 

  131. Li H, Huang Q, Pan G, Dong X (2020) The transient prediction of a pre-swirl stator pump-jet propulsor and a comparative study of hybrid RANS/LES simulations on the wake vortices. Ocean Eng. https://doi.org/10.1016/j.oceaneng.2020.107224

    Article  Google Scholar 

  132. Morrall A, Quayle S, Campobasso MS (2020) Turbulence modelling for RANS CFD analyses of multi-nozzle annular jet pump swirling flows. Int J Heat Fluid Flow 85:108652. https://doi.org/10.1016/j.ijheatfluidflow.2020.108652

    Article  Google Scholar 

  133. Xiao H, Cinnella P (2019) Quantification of model uncertainty in RANS simulations: a review. Prog Aerosp Sci 108:1–31. https://doi.org/10.1016/j.paerosci.2018.10.001

    Article  Google Scholar 

  134. Fröhlich J, von Terzi D (2008) Hybrid LES/RANS methods for the simulation of turbulent flows. Prog Aerosp Sci 44:349–377. https://doi.org/10.1016/j.paerosci.2008.05.001

    Article  Google Scholar 

  135. Thé J, Yu H (2017) A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods. Energy 138:257–289. https://doi.org/10.1016/j.energy.2017.07.028

    Article  Google Scholar 

  136. Kan K, Yang Z, Lyu P et al (2021) Numerical study of turbulent flow past a rotating axial- fl ow pump based on a level-set immersed boundary method. Renew Energy 168:960–971. https://doi.org/10.1016/j.renene.2020.12.103

    Article  Google Scholar 

  137. Lucius A, Brenner G (2010) Unsteady CFD simulations of a pump in part load conditions using scale-adaptive simulation. International Journal of Heat and Fluid Flow. Int J Heat Fluid Flow 31:1113–1118

    Article  Google Scholar 

  138. Brinkerhoff J (2019) Large eddy simulation of an axial pump with coupled flow rate calculation using the sharp interface immersed boundary method. Int J Numer Methods Heat Fluid Flow Preprint: https://doi.org/10.1108/HFF-09-2018-0502

    Article  Google Scholar 

  139. Yamade Y, Kato C, Shimizu H, Nagahara T (2009) Large eddy simulation of internal flow of a mixed-flow pump. In: ASME 2009 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, USA, pp 407–416

  140. Moukalled F, Mangani L, Darwish M (2015) The finite volume method in computational fluid dynamics: an advanced introduction with OpenFOAM and Matlab. Springer International Publishing

  141. Gimbun J, Chuah TG, Fakhru’l-Razi A, Choong TSY (2005) The influence of temperature and inlet velocity on cyclone pressure drop: A CFD study. Chem Eng Process 44:7–12. https://doi.org/10.1016/j.cep.2004.03.005

    Article  Google Scholar 

  142. Roudnev AS, Bourgeois RJ, Kosmicki RJ (2009) Slurry pump casing wear prediction using numerical multi-phase flow simulation. In: The ASME 2009 Fluids Engineering Division Summer Meeting. Vail, Colorado, USA, pp 1–9

  143. Spalart PR, Jou WH, Strelets MK, Allmaras SR (1997) Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach. In: Advances in DNS/LES. pp 4–8

  144. Spalart P, Allmaras S (1992) a one-equation turbulence model for aerodynamic flows. In: 30th Aerospace Sciences Meeting and Exhibition. Reno, NV, USA, pp 5–21

  145. Nini M, Motta V, Bindolino G, Guardone A (2014) Three-dimensional simulation of a complete vertical axis wind turbine using overlapping grids. J Comput Appl Math 270:78–87. https://doi.org/10.1016/j.cam.2014.02.020

    Article  MATH  Google Scholar 

  146. Kostić Č (2015) Review of the spalart-allmaras turbulence model and its modifications to three-dimensional supersonic configurations. Sci Tech Rev 65:43–49

    Article  Google Scholar 

  147. Mao J, Yuan S, Pei J et al (2014) Applications of different turbulence models in simulations of a large annular volute-type pump with the diffuser. In: IOP Conference Series: Earth and Environmental Science

  148. Drew DA (1983) Mathematical modeling of two-phase flow. Annu Rev Fluid Mech 15:261–291. https://doi.org/10.1146/annurev.fl.15.010183.001401

    Article  Google Scholar 

  149. Kumar J, Tiwari G, Rawat A, Patel VK (2020) Computational investigation of erosion wear on industrial centrifugal pump handling solid-water flows. Tribol Ind 42:382–399

    Article  Google Scholar 

  150. Chen Q, Xu W (1998) A zero-equation turbulence model for indoor airflow simulation. Energy Build 28:137–144. https://doi.org/10.1016/s0378-7788(98)00020-6

    Article  Google Scholar 

  151. Autodesk (2018) Zero-equation turbulence models. In: CFD Support Learn. https://knowledge.autodesk.com/support/cfd/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/SimCFD-Learning/files/GUID-4148B3AE-8B8E-49AA-A604-1DAE92CD8D02-htm.html. Accessed 15 Jun 2021

  152. Launder BE (1972) Lectures in mathematical models of turbulence. Academic Press, London, New York

    MATH  Google Scholar 

  153. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269–289. https://doi.org/10.1016/0045-7825(74)90029-2

    Article  MATH  Google Scholar 

  154. Orszag SA, Yakhot V, Flannery WS, Boysan F (1993) Renormalization group modeling and turbulence simulations. In: International Conference, Near-Wall Turbulent Flows. Elsevier, Tempe, Arizona, p 1031

  155. Azadi M, Azadi M, Mohebbi A (2010) A CFD study of the effect of cyclone size on its performance parameters. J Hazard Mater 182:835–841. https://doi.org/10.1016/j.jhazmat.2010.06.115

    Article  Google Scholar 

  156. Soe TM, Khaing SY (2017) Comparison of turbulence models for computational fluid dynamics simulation of wind flow on cluster of buildings in mandalay. Int J Sci Res Publ 7:337–350

    Google Scholar 

  157. Griffiths WD, Boysan F (1996) Computational fluid dynamics (CFD) and empirical modelling of the performance of a number of cyclone samplers. J Aerosol Sci 27:281–304. https://doi.org/10.1016/0021-8502(95)00549-8

    Article  Google Scholar 

  158. Ma L, Ingham DB, Wen X (2000) Numerical modelling of the fluid and particle penetration through small sampling cyclones. J Aerosol Sci 31:1097–1119. https://doi.org/10.1016/S0021-8502(00)00016-1

    Article  Google Scholar 

  159. Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. https://doi.org/10.2514/3.12149

    Article  Google Scholar 

  160. Sodja J, Podgornik R (2007) Turbulence models in CFD. Univ Ljubljana 1–18

  161. Mohammad E (2017) Better particle erosion fluid dynamics modeling in ansys fluent 18. In: Ansys blog. https://www.ansys.com/blog/erosion-fluid-dynamics-modeling. Accessed 17 Apr 2020

  162. Hamed A, Tabakoff W, Wenglarz R (2006) Erosion and deposition in turbomachinery. J Propuls Power 22:350–360. https://doi.org/10.2514/1.18462

    Article  Google Scholar 

  163. More SR, Bhatt DV, Menghani JV (2017) Recent research status on erosion wear - an overview. Mater Today Proc 4:257–266. https://doi.org/10.1016/j.matpr.2017.01.020

    Article  Google Scholar 

  164. Adedeji OE, Yu W, Sanders RS (2019) Analysis of local wear variables for high-precision erosion modelling in complex geometries. Wear 426–427:562–569. https://doi.org/10.1016/j.wear.2018.12.071

    Article  Google Scholar 

  165. Chochua GG, Shirazi SA (2019) A combined CFD-experimental study of erosion wear life prediction for non-Newtonian viscous slurries. Wear 426–427:481–490. https://doi.org/10.1016/j.wear.2018.12.003

    Article  Google Scholar 

  166. Finnie I (1972) Some observations on the erosion of ductile metals. Wear 19:81–90. https://doi.org/10.1016/0043-1648(72)90444-9

    Article  Google Scholar 

  167. Lester DR, Graham LA, Wu J (2010) High precision suspension erosion modeling. Wear 269:449–457. https://doi.org/10.1016/j.wear.2010.04.032

    Article  Google Scholar 

  168. Patel TS (2009) Mechanics of erosion

  169. López A, Stickland MT, Dempster WM (2014) Comparative study of different erosion models in an Eulerian-Lagrangian frame using open source software. Fluid Mach Congr. https://doi.org/10.1016/B978-0-0810-0109-7.50016-9

    Article  Google Scholar 

  170. Chahar BS, Pun AK (2018) Erosion wear of ductile materials : a review. ELK Asia Pacific Journals – Spec Issue

  171. Liz DC (2016) The finnie model of erosive wear. In: Granul. Mater. https://lizidelcidphd.com/2016/06/09/the-finnie-model-of-erosive-wear/#:~:text=Wear%2C 3(2)%3A87,particles striking the ductile surface. Accessed 17 Apr 2021

  172. Oka YI, Ohnogi H, Hosokawa T, Matsumura M (1997) The impact angle dependence of erosion damage caused by solid particle impact. Wear 203–204:573–579. https://doi.org/10.1016/S0043-1648(96)07430-3

    Article  Google Scholar 

  173. Oka YI, Okamura K, Yoshida T (2005) Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation. Wear 259:95–101. https://doi.org/10.1016/j.wear.2005.01.039

    Article  Google Scholar 

  174. McLaury BS, Shirazi SA, Shadley JR, Rybicki EF (1996) Modeling erosion in chokes. ASME Fluids Engineering Division summer meeting. ASME, Sandigo, CA, pp 773–786

    Google Scholar 

  175. Zhang Y, Reuterfors EP, McLaury BS et al (2007) Comparison of computed and measured particle velocities and erosion in water and air flows. Wear 263:330–338. https://doi.org/10.1016/j.wear.2006.12.048

    Article  Google Scholar 

  176. Ahlert KR (1994) Effects of particle impingement angle and surface wetting on solid particle erosion of AISI 1018 steel. The University of Tulsa

  177. Yan C, Liu J, Zheng S et al (2020) Study on the effects of the wear-rings clearance on the solid-liquid two-phase flow characteristics of centrifugal pumps. Symmetry (Basel) 12:2003

    Article  Google Scholar 

  178. Wang J, Shirazi SA (2003) A CFD based correlation for erosion factor for long-radius elbows and bends. J Energy Resour Technol Trans ASME 125:26–34. https://doi.org/10.1115/1.1514674

    Article  Google Scholar 

  179. Fen L, Yu W, Ei-shahat SA et al (2019) Numerical study of solid particle erosion in a centrifugal pump for liquid-solid flow. J Fluids Eng doi 10(1115/1):4043580

    Google Scholar 

  180. Njobuenwu DO, Fairweather M (2012) Modelling of pipe bend erosion by dilute particle suspensions. Comput Chem Eng 42:235–247. https://doi.org/10.1016/j.compchemeng.2012.02.006

    Article  Google Scholar 

  181. Archard JF (1953) Contact and rubbing of flat surfaces. J Appl Phys 24:981–988. https://doi.org/10.1063/1.1721448

    Article  Google Scholar 

  182. Terwey JT, Fourati MA, Pape F, Poll G (2020) Energy-based modelling of adhesive wear in the mixed lubrication regime. Lubricants. https://doi.org/10.3390/lubricants8020016

    Article  Google Scholar 

  183. Qui X, Potapov A, Song M, Nordell L (2001) Prediction of wear of mill lifters using discrete element method. In: 2001 SAG Conference Proceedings. canada, pp 2–7

  184. de Hoog E, van Wijk JM, Wijnands JTM, Talmon AM (2020) Degradation of polymetallic nodules during hydraulic transport under influence of particle-wall and particle-particle interaction. Miner Eng 155:106415. https://doi.org/10.1016/j.mineng.2020.106415

    Article  Google Scholar 

  185. McLaury BS, Wang J, Shirazi SA, Shadley JR, Rybicki EF (1997) Solid particle erosion in long radius elbows and straight pipes. In: SPE Annual Technical Conference and Exhibition. San Antonio, Texas

  186. Bajracharya TR, Shrestha R, Timilsina AB (2019) Solid particle erosion models and their application to predict wear in pelton turbine injector. J Inst Eng 15:349–359

    Article  Google Scholar 

  187. Alshammari A, Djavanroodi F, Jassim E (2021) Numerical simulation of the erosion phenomenon at the knee tube at different angles using DOE method. In: 7th World Congress on Mechanical, Chemical, and Material Engineering (MCM’21). Prague, Czech Republic, pp 1–7

  188. Khalid YA, Sapuan SM (2007) Wear analysis of centrifugal slurry pump impellers. Ind Lubr Tribol 59:18–28. https://doi.org/10.1108/00368790710723106

    Article  Google Scholar 

  189. Walker CI, Bodkin GC (2000) Empirical wear relationships for centrifugal slurry pumps part 1: Side-liners. Wear 242:140–146. https://doi.org/10.1016/S0043-1648(00)00413-0

    Article  Google Scholar 

  190. Xing D, Hai-lu Z, Xin-yong W (2009) Finite element analysis of wear for centrifugal slurry pump. Procedia Earth Planet Sci 1:1532–1538. https://doi.org/10.1016/j.proeps.2009.09.236

    Article  Google Scholar 

  191. Yi T, Shouqi Y, Jinfeng Z (2014) Numerical simulation and test on impeller wear of slurry pump. Trans Chinese Soc Agric Eng 30:63–69

    Google Scholar 

  192. Xiao Y, Guo B, Ahn SH et al (2019) Slurry flow and erosion prediction in a centrifugal pump after long-term operation. Energies. https://doi.org/10.3390/en12081523

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52079058 and 51979138), Zhenjiang Key Research and Development Project (Grant No. GY2020008), Nature Science Foundation for Excellent Young Scholars of Jiangsu Province (Grant No. BK20190101), National Key Research and Development Project (Grant No. 2020YFC1512404), “Pioneer” and “Leading Goose” R&D Program of Zhejiang (2022C03170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zhou.

Ethics declarations

Conflict of interest

The authors are not aware of any biases that might affect the objectivity of this review. The authors also declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Emam, M.A., Zhou, L., Yasser, E. et al. Computational Methods of Erosion Wear in Centrifugal Pump: A State-of-the-Art Review. Arch Computat Methods Eng 29, 3789–3814 (2022). https://doi.org/10.1007/s11831-022-09714-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-022-09714-x

Navigation