Skip to main content
Log in

Investigation and Implementation of Model Order Reduction Technique for Large Scale Dynamical Systems

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Model Order Reduction (MOR) has demonstrated its robustness and wide use in engineering and science for the simulation of large-scale mathematical systems over the last few decades. MOR is currently being intensively optimized for dynamic systems that are becoming increasingly complex. MOR broad applications have been identified not only in the modeling but also for optimization and control engineering applications. In the present article, various methods related to MOR for large-scale linear and nonlinear dynamic systems have been analyzed, mainly pertaining to electrical power systems, control engineering, computational system theory, and design. The paper focuses on a detailed theoretic Perspective for MOR of the large-scale dynamical system to address the key challenges to the approximation along with their application. Firstly, a complete description of the literature search for various approximation techniques has been presented and the various inferences have been mentioned as the outcome. One of the drawbacks that we have found out of the investigation, has been taken as a sample problem. The key demerit of the balanced truncation approach is that the ROM steady-state values do not correspond with the higher-order system (HOS). This drawback has been eliminated in the proposed approach, which leads to the hybridization of balanced truncation and singular perturbation approximation (SPA) into a novel reduction method without the loss of retaining its dynamic behavior. The reduced system has been so designed to preserve the complete parameters of the original system with reasonable accuracy. The approach is based on the retention of the dominant states or modes of the system and is comparatively less important once. The reduced system evolves from the preservation of the dominant states or modes of the original system and thus retains stability intact. The methodology presented has been tested on two typical numerical examples taken from the literature review, to examine the performance, precision, and comparison with other available order reduction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

My manuscript has no associated data.

References

  1. Li S, Xiang Z (2020) Sampled-data decentralized output feedback control for a class of switched large-scale stochastic nonlinear systems. IEEE Syst J 14(2):1602–1610. https://doi.org/10.1109/JSYST.2019.2934512

    Article  Google Scholar 

  2. Patalano S, Mango Furnari A, Vitolo F, Dion JL, Plateaux R, Renaud F (2021) A critical exposition of model order reduction techniques: application to a slewing flexible beam. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-019-09369-1

    Article  MathSciNet  Google Scholar 

  3. He W, Li S, Ahn CK, Guo J, Xiang Z (2020) Global decentralized control of p-normal large-scale nonlinear systems based on sampled-data output feedback. IEEE Syst J. https://doi.org/10.1109/jsyst.2020.2997029

    Article  Google Scholar 

  4. Chan SC, Wu HC, Ho CH, Zhang L (2019) An augmented Lagrangian approach for distributed robust estimation in large-scale systems. IEEE Syst J 13(3):2986–2997. https://doi.org/10.1109/JSYST.2019.2897788

    Article  Google Scholar 

  5. Sikander A, Prasad R (2015) Soft computing approach for model order reduction of linear time invariant systems. Circuits Syst Signal Process 34(11):3471–3487. https://doi.org/10.1007/s00034-015-0018-4

    Article  Google Scholar 

  6. Kumar J, Sikander A, Mehrotra M, Parmar G (2020) A new soft computing approach for order diminution of interval system. Int J Syst Assur Eng Manag 11:366–373. https://doi.org/10.1007/s13198-019-00865-y

    Article  Google Scholar 

  7. Antoulas AC, Benner P, Feng L (2018) Model reduction by iterative error system approximation. Math Comput Model Dyn Syst 42(2):103–118. https://doi.org/10.1080/13873954.2018.1427116

    Article  MathSciNet  MATH  Google Scholar 

  8. Sikander A, Prasad R (2015) Linear time-invariant system reduction using a mixed methods approach. Appl Math Model 39(16):4848–4858. https://doi.org/10.1016/j.apm.2015.04.014

    Article  MathSciNet  MATH  Google Scholar 

  9. Sikander A, Prasad R (2019) Reduced order modelling based control of two wheeled mobile robot. J Intell Manuf 30(3):1057–1067. https://doi.org/10.1007/s10845-017-1309-3

    Article  Google Scholar 

  10. Uniyal I, Sikander A (2018) A comparative analysis of PID controller design for AVR based on optimization techniques. In: Advances in intelligent systems and computing, pp 1315–1323. https://doi.org/10.1007/978-981-10-5903-2_138

  11. Prajapati AK, Prasad R (2019) Reduced-order modelling of LTI systems by using Routh approximation and factor division methods. Circuits Syst Signal Process 38(7):3340–3355. https://doi.org/10.1007/s00034-018-1010-6

    Article  Google Scholar 

  12. Baur U, Benner P, Feng L (2014) Model order reduction for linear and nonlinear systems: a system-theoretic perspective. Arch Comput Methods Eng 21(4):331–358. https://doi.org/10.1007/s11831-014-9111-2

    Article  MathSciNet  MATH  Google Scholar 

  13. Rowley CW (2005) Model reduction for fluids, using balanced proper orthogonal decomposition. Int J Bifurcat Chaos 15(3):997–1013. https://doi.org/10.1142/S0218127405012429

    Article  MathSciNet  MATH  Google Scholar 

  14. Schilders WHA, Van Der Vorst HA, Rommes J (2008) Model order reduction: theory, research aspects and applications, vol 13. Springer, Berlin

    Book  MATH  Google Scholar 

  15. Sundström D (1985) Mathematics in industry. Int J Math Educ Sci Technol. https://doi.org/10.1080/0020739850160226

    Article  Google Scholar 

  16. Mohamed KS (2018) Machine learning for model order reduction. Springer, Berlin

    Book  Google Scholar 

  17. Schilders WHA, van der Vorst HA, Rommes J (2008) Model order reduction: theory, research aspects and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  18. Chaturvedi DK (2017) Model order reduction. In: Modeling and simulation of systems using MATLAB® and Simulink®. CRC Press, Boca Raton

  19. Pivovarov D et al (2019) Challenges of order reduction techniques for problems involving polymorphic uncertainty. GAMM Mitteilungen. https://doi.org/10.1002/gamm.201900011

    Article  MathSciNet  Google Scholar 

  20. Bui-Thanh T, Willcox K, Ghattas O (2008) Parametric reduced-order models for probabilistic analysis of unsteady aerodynamic applications. AIAA J 46(10):2520–2529. https://doi.org/10.2514/1.35850

    Article  Google Scholar 

  21. Mendonça G, Afonso F, Lau F (2019) Model order reduction in aerodynamics: review and applications. Proc Inst Mech Eng Part G J Aerosp Eng 233(15):5816–5836. https://doi.org/10.1177/0954410019853472

    Article  Google Scholar 

  22. Baur U, Benner P, Greiner A, Korvink JG, Lienemann J, Moosmann C (2011) Parameter preserving model order reduction for MEMS applications. Math Comput Model Dyn Syst 17(4):297–317. https://doi.org/10.1080/13873954.2011.547658

    Article  MathSciNet  MATH  Google Scholar 

  23. Anand S, Fernandes BG (2013) Reduced-order model and stability analysis of low-voltage dc microgrid. IEEE Trans Ind Electron. https://doi.org/10.1109/TIE.2012.2227902

    Article  Google Scholar 

  24. Mariani V, Vasca F, Vásquez JC, Guerrero JM (2015) Model order reductions for stability analysis of islanded microgrids with droop control. IEEE Trans Ind Electron 62(7):4344–4354. https://doi.org/10.1109/TIE.2014.2381151

    Article  Google Scholar 

  25. Bai Z (2002) Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl Numer Math 43(1–2):9–44. https://doi.org/10.1016/S0168-9274(02)00116-2

    Article  MathSciNet  MATH  Google Scholar 

  26. Freund RW (2000) Krylov-subspace methods for reduced-order modeling in circuit simulation. J Comput Appl Math 123(1–2):395–421. https://doi.org/10.1016/S0377-0427(00)00396-4

    Article  MathSciNet  MATH  Google Scholar 

  27. Freund RW (2004) SPRIM: structure-preserving reduced-order interconnect macromodeling. In: IEEE/ACM international conference on computer-aided design, Digest of Technical Papers, ICCAD, pp 80–87. https://doi.org/10.1109/iccad.2004.1382547

  28. Wang X, Yu M, Wang C (2018) Structure-preserving-based model-order reduction of parameterized interconnect systems. Circuits Syst Signal Process 37(1):19–48. https://doi.org/10.1007/s00034-017-0561-2

    Article  MathSciNet  MATH  Google Scholar 

  29. Freund RW (2011) The SPRIM algorithm for structure-preserving order reduction of general RCL circuits. In: Lecture notes in electrical engineering, pp 25–52. https://doi.org/10.1007/978-94-007-0089-5_2

  30. Beattie C, Gugercin S (2009) Interpolatory projection methods for structure-preserving model reduction. Syst Control Lett 58(2):225–232. https://doi.org/10.1016/j.sysconle.2008.10.016

    Article  MathSciNet  MATH  Google Scholar 

  31. Odabasioglu A, Celik M, Pileggi LT (1997) PRIMA: Passive reduced-order interconnect macromodeling algorithm. In: IEEE/ACM international conference on computer-aided design, Digest of Technical Papers, pp 433–450. https://doi.org/10.1007/978-1-4615-0292-0_34

  32. Odabasioglu A, Celik M, Pileggi LT (1998) PRIMA: Passive reduced-order interconnect macromodeling algorithm. IEEE Trans Comput Des Integr Circuits Syst 17(8):645–654. https://doi.org/10.1109/43.712097

    Article  Google Scholar 

  33. Ionutiu R, Rommes J, Antoulas AC (2008) Passivity-preserving model reduction using dominant spectral-zero interpolation. IEEE Trans Comput Des Integr Circuits Syst 27(12):2250–2263. https://doi.org/10.1109/TCAD.2008.2006160

    Article  Google Scholar 

  34. Fanizza G, Karlsson J, Lindquist A, Nagamune R (2006) A global analysis approach to passivity preserving model reduction. In: Proceedings of the IEEE conference on decision and control, pp 3399–3404. https://doi.org/10.1109/cdc.2006.376706

  35. Antoulas AC (2005) A new result on passivity preserving model reduction. Syst Control Lett 54(4):361–374. https://doi.org/10.1016/j.sysconle.2004.07.007

    Article  MathSciNet  MATH  Google Scholar 

  36. Farle O, Burgard S, Dyczij-Edlinger R (2011) Passivity preserving parametric model-order reduction for non-affine parameters. Math Comput Model Dyn Syst 17(3):279–294. https://doi.org/10.1080/13873954.2011.562901

    Article  MathSciNet  MATH  Google Scholar 

  37. Fuchs A (2013) Nonlinear dynamics in complex systems. Springer, Berlin, p 2008

    Book  Google Scholar 

  38. Burkardt J, Du Q, Gunzburger M, Lee H-C (2003) Reduced order modeling of complex systems. NA03 Dundee

  39. Sargsyan S, Brunton SL, Kutz JN (2015) Nonlinear model reduction for dynamical systems using sparse sensor locations from learned libraries. Phys Rev E Stat Nonlinear Soft Matter Phys. https://doi.org/10.1103/PhysRevE.92.033304

    Article  Google Scholar 

  40. Rafiq D, Bazaz MA (2021) Nonlinear model order reduction via nonlinear moment matching with dynamic mode decomposition. Int J Non Linear Mech. https://doi.org/10.1016/j.ijnonlinmec.2020.103625

    Article  Google Scholar 

  41. Venna J, Kaski S, Aidos H, Nybo K, Peltonen J (2010) Information retrieval perspective to nonlinear dimensionality reduction for data visualization. J Mach Learn Res 11(2):451–490

    MathSciNet  MATH  Google Scholar 

  42. Lassila T, Manzoni A, Quarteroni A, Rozza G (2014) Model order reduction in fluid dynamics: challenges and perspectives. In: Reduced order methods for modeling and computational reduction

  43. Preisner T, Mathis W (2010) Scientific computing in electrical engineering SCEE 2008. Springer, Berlin

    Google Scholar 

  44. Rudnyi E, Korvink J (2006) Modern model order reduction for industrial applications. Report, Germany

  45. Gray PR, Meyer RG (2009) Analysis and design of analog integrated circuits. Wiley, Hoboken

    Google Scholar 

  46. Tan S, He L (2007) Advanced model order reduction techniques in VLSI design. Cambridge University Press, New York

    Book  Google Scholar 

  47. Kerschen G, Golinval JC, Vakakis AF, Bergman LA (2005) The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn 41(1):147–169. https://doi.org/10.1007/s11071-005-2803-2

    Article  MathSciNet  MATH  Google Scholar 

  48. Bond B, Daniel L (2005) Parameterized model order reduction of nonlinear dynamical systems. In: IEEE/ACM international conference on computer-aided design, Digest of Technical Papers, ICCAD, pp 487–494. https://doi.org/10.1109/ICCAD.2005.1560117

  49. Qu Z-Q (2004) Model order reduction techniques with applications in finite element analysis. Springer, London

    MATH  Google Scholar 

  50. Brozek T, Iniewski KK (2017) Micro-and nanoelectronics: emerging device challenges and solutions. CRC Press, Boca Raton

    Book  Google Scholar 

  51. Lienemann J, Billger D, Rudnyi EB, Greiner A, Korvink JG (2004) MEMS compact modeling meets model order reduction: examples of the application of Arnoldi methods to microsystem devices

  52. Rudnyi EB, Korvink JG (2006) Model order reduction for large scale engineering models developed in ANSYS. In: International workshop on applied parallel computing. Springer, Berlin, Heidelberg, pp 349–356. https://doi.org/10.1007/11558958_41

  53. Djukic S, Saric A (2012) Dynamic model reduction: an overview of available techniques with application to power systems. Serbian J Electr Eng 9(2):131–169. https://doi.org/10.2298/sjee1202131d

    Article  Google Scholar 

  54. Veroy K, Prud’Homme C, Rovas DV, Patera AT (2003) A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. In: 16th AIAA computational fluid dynamics conference, p. 3847. https://doi.org/10.2514/6.2003-3847

  55. Rozza G, Huynh DBP, Patera AT (2008) Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch Comput Methods Eng 15(3):229–275. https://doi.org/10.1007/s11831-008-9019-9

    Article  MathSciNet  MATH  Google Scholar 

  56. Jung N, Patera AT, Haasdonk B, Lohmann B (2011) Model order reduction and error estimation with an application to the parameter-dependent eddy current equation. Math Comput Model Dyn Syst. https://doi.org/10.1080/13873954.2011.582120

    Article  MathSciNet  MATH  Google Scholar 

  57. Haasdonk B, Ohlberger M (2011) Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline/online decomposition. Math Comput Model Dyn Syst. https://doi.org/10.1080/13873954.2010.514703

    Article  MathSciNet  MATH  Google Scholar 

  58. Lorenzi S, Cammi A, Luzzi L, Rozza G (2016) POD-Galerkin method for finite volume approximation of Navier–Stokes and RANS equations. Comput Methods Appl Mech Eng 311:151–179. https://doi.org/10.1016/j.cma.2016.08.006

    Article  MathSciNet  MATH  Google Scholar 

  59. Star K, Stabile G, Georgaka S, Belloni F, Rozza G, Degroote J (2019) Pod-Galerkin reduced order model of the Boussinesq approximation for buoyancy-driven enclosed flows. In: International conference on mathematics and computational methods applied to nuclear science and engineering, M and C 2019, pp. 2452–2461

  60. Bui-Thanh T, Damodaran M, Willcox K (2003) Proper orthogonal decomposition extensions for parametric applications in compressible aerodynamics. In: 21st AIAA applied aerodynamics conference, p. 4213. https://doi.org/10.2514/6.2003-4213

  61. Thomas PV, ElSayed MSA, Walch D (2019) Review of model order reduction methods and their applications in aeroelasticity loads analysis for design optimization of complex airframes. J Aerosp Eng. https://doi.org/10.1061/(asce)as.1943-5525.0000972

    Article  Google Scholar 

  62. Binder A, Jadhav O, Mehrmann V (2020) Model order reduction for parametric high dimensional interest rate models in the analysis of financial risk. arXiv

  63. Parmar G, Mukherjee S, Prasad R (2007) System reduction using factor division algorithm and Eigen spectrum analysis. Appl Math Model 31(11):2542–2552. https://doi.org/10.1016/j.apm.2006.10.004

    Article  MATH  Google Scholar 

  64. Hwang C, Chen MY (1987) Stable linear system reduction via a multipoint tangent phase continued-fraction expansion. J Chin Inst Eng Trans Chin Inst Eng A/Chung-kuo K Ch’eng Hsuch K’an. https://doi.org/10.1080/02533839.1987.9676990

    Article  Google Scholar 

  65. Antoulas AC (2005) An overview of approximation methods for large-scale dynamical systems. Annu Rev Control. https://doi.org/10.1016/j.arcontrol.2005.08.002

    Article  MATH  Google Scholar 

  66. Pal J (1979) Stable reduced-order padé approximants using the Routh–Hurwitz array. Electron Lett 15(8):225–226. https://doi.org/10.1049/el:19790159

    Article  Google Scholar 

  67. Pindor M (2006) Padé approximants. Lect Notes Control Inf Sci. https://doi.org/10.1007/11601609_4

    Article  MathSciNet  MATH  Google Scholar 

  68. Guillaume P, Huard A (2000) Multivariate Pade approximation. J Comput Appl Math. https://doi.org/10.1016/S0377-0427(00)00337-X

    Article  MathSciNet  MATH  Google Scholar 

  69. Shamash Y (1975) Linear system reduction using pade approximation to allow retention of dominant modes. Int J Control 21(2):257–272. https://doi.org/10.1080/00207177508921985

    Article  MathSciNet  MATH  Google Scholar 

  70. Shamash Y (1975) Multivariable system reduction via modal methods and Padé approximation. IEEE Trans Autom Control 20(6):815–817. https://doi.org/10.1109/TAC.1975.1101090

    Article  MATH  Google Scholar 

  71. Verma P, Juneja PK, Chaturvedi M (2017) Various mixed approaches of model order reduction. In: Proceedings - 2016 8th international conference on computational intelligence and communication networks, CICN 2016, pp 673–676. https://doi.org/10.1109/CICN.2016.138

  72. Adamou-Mitiche ABH, Mitiche L, Larbi S (2013) Time and frequency approaches in the approximation problem: a comparative study. https://doi.org/10.1109/ICoSC.2013.6750916

  73. Shamash Y (1975) Model reduction using the routh stability criterion and the Pade approximation technique. Int J Control 21(3):475–484. https://doi.org/10.1080/00207177508922004

    Article  MathSciNet  MATH  Google Scholar 

  74. Chen TC, Chang CY, Han KW (1980) Model reduction using the stability-equation method and the Padé approximation method. J Frankl Inst 309(6):473–490. https://doi.org/10.1016/0016-0032(80)90096-4

    Article  MATH  Google Scholar 

  75. Chen TC, Chang CY, Han KW (1979) Reduction of transfer functions by the stability-equation method. J Frankl Inst 308(4):389–404. https://doi.org/10.1016/0016-0032(79)90066-8

    Article  MathSciNet  MATH  Google Scholar 

  76. Sikander A, Thakur P, Uniyal I (2017) Hybrid method of reduced order modelling for LTI system using evolutionary algorithm. In: Proceedings on 2016 2nd international conference on next generation computing technologies, NGCT 2016, pp 84–88. https://doi.org/10.1109/NGCT.2016.7877394

  77. Lucas TN (1992) A tabular approach to the stability equation method. J Frankl Inst 329(1):171–180. https://doi.org/10.1016/0016-0032(92)90106-Q

    Article  MathSciNet  MATH  Google Scholar 

  78. Mohammadpour J, Grigoriadis KM (2010) Efficient modeling and control of large-scale systems. Springer, Berlin

    Book  MATH  Google Scholar 

  79. Grimme EJ (1997) Krylov projection methods for model reduction. University of Illinois at Urbana-Champaign

  80. Antoulas AC (2005) Approximation of large-scale dynamical systems. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  81. Hochbruck M, Lubich C (1997) On Krylov subspace approximations to the matrix exponential operator. SIAM J Numer Anal. https://doi.org/10.1137/S0036142995280572

    Article  MathSciNet  MATH  Google Scholar 

  82. Bruaset AM (2019) Krylov subspace methods. In: A survey of preconditioned iterative methods. Routledge, Boca Raton

  83. Kumar D, Nagar SK (2014) Model reduction by extended minimal degree optimal Hankel norm approximation. Appl Math Model 38(11–12):2922–2933. https://doi.org/10.1016/j.apm.2013.11.012

    Article  MathSciNet  MATH  Google Scholar 

  84. Adamjan VM, Arov DZ, Krein MG (1971) Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur–Takagi problem. Math USSR Sb 15(1):31. https://doi.org/10.1070/SM1971v015n01ABEH001531

    Article  MATH  Google Scholar 

  85. Kung SY, Lin DW (1981) Optimal Hankel-norm model reductions: multivariable systems. IEEE Trans Autom Control 26(4):832–852. https://doi.org/10.1109/TAC.1981.1102736

    Article  MathSciNet  MATH  Google Scholar 

  86. Latham GA, Anderson BDO (1985) Frequency-weighted optimal Hankel-norm approximation of stable transfer functions. Syst Control Lett 5(4):229–236

    Article  MathSciNet  MATH  Google Scholar 

  87. Hung YS, Glover K (1986) Optimal Hankel-norm approximation of stable systems with first-order stable weighting functions. Syst Control Lett 7(3):165–172. https://doi.org/10.1016/0167-6911(86)90110-6

    Article  MathSciNet  MATH  Google Scholar 

  88. Antoulas AC, Beattie CA, Gugercin S (2010) Interpolatory model reduction of large-scale dynamical systems. In: Efficient modeling and control of large-scale systems

  89. Korvink JG, Rudnyi EB, Greiner A, Liu Z (2006) MEMS and NEMS simulation. In: MEMS: a practical guide of design, analysis, and applications

  90. Zhou K (1995) Frequency-weighted L∞ norm and optimal Hankel norm model reduction. IEEE Trans Autom Control. https://doi.org/10.1109/9.467681

    Article  MathSciNet  MATH  Google Scholar 

  91. Benner P, Quintana-Ortí ES, Quintana-Ortí G (2000) Balanced truncation model reduction of large-scale dense systems on parallel computers. Math Comput Model Dyn Syst. https://doi.org/10.1076/mcmd.6.4.383.3658

    Article  MATH  Google Scholar 

  92. Antoulas AC, Sorensen DC, Zhou Y (2002) On the decay rate of Hankel singular values and related issues. Syst Control Lett 46(5):323–342. https://doi.org/10.1016/S0167-6911(02)00147-0

    Article  MathSciNet  MATH  Google Scholar 

  93. Powel ND, Morgansen KA (2015, December) Empirical observability Gramian rank condition for weak observability of nonlinear systems with control. In 2015 54th IEEE conference on decision and control (CDC). IEEE, pp 6342–6348. https://doi.org/10.1109/CDC.2015.7403218

  94. Grippo L, Palagi L, Piccialli V (2011) An unconstrained minimization method for solving low-rank SDP relaxations of the maxcut problem. Math Program. https://doi.org/10.1007/s10107-009-0275-8

    Article  MathSciNet  MATH  Google Scholar 

  95. Freitas FD, Rommes J, Martins N (2011, March). Low-rank gramian applications in dynamics and control. In 2011 international conference on communications, computing and control applications (CCCA). IEEE, pp 1–6. https://doi.org/10.1109/CCCA.2011.6031400

  96. Markovsky I (2008) Structured low-rank approximation and its applications. Automatica. https://doi.org/10.1016/j.automatica.2007.09.011

    Article  MATH  Google Scholar 

  97. Pal J, Prasad R (1986) Stable low order approximants using continued fraction expansions. In MSE international conference on modelling simulation

  98. Baštuğ M, Petreczky M, Wisniewski R, Leth J (2014, June) Model reduction by moment matching for linear switched systems. In 2014 american control conference. IEEE, pp 3942–3947. https://doi.org/10.1109/ACC.2014.6858983

  99. Bultheel A, Van Barel M (1986) Padé techniques for model reduction in linear system theory: a survey. J Comput Appl Math 14(3):401–438. https://doi.org/10.1016/0377-0427(86)90076-2

    Article  MathSciNet  MATH  Google Scholar 

  100. Parmar G, Mukherjee S, Prasad R (2007) System reduction using Eigen spectrum analysis and Padé approximation technique. Int J Comput Math. https://doi.org/10.1080/00207160701345566

    Article  MATH  Google Scholar 

  101. Prajapati AK, Prasad R (2019) Order reduction in linear dynamical systems by using improved balanced realization technique. Circuits Syst Signal Process 38(11):5289–5303. https://doi.org/10.1007/s00034-019-01109-x

    Article  Google Scholar 

  102. Hutton MF, Friedland B (1975) Routh approximations for reducing order of linear, time-invariant systems. IEEE Trans Autom Control 20(3):329–337. https://doi.org/10.1109/TAC.1975.1100953

    Article  MathSciNet  MATH  Google Scholar 

  103. Pal J (1980) System reduction by a mixed method. IEEE Trans Autom Control 25(5):973–976. https://doi.org/10.1109/TAC.1980.1102485

    Article  MathSciNet  MATH  Google Scholar 

  104. Rao AS, Lamba SS, Rao SV (1979) Comments on ‘model reduction using the Routh stability criterion.’ IEEE Trans Autom Control 24(3):518–518. https://doi.org/10.1109/TAC.1979.1102069

    Article  Google Scholar 

  105. Mishra RN, Wilson DA (1980) A new algorithm for optimal reduction of multivariable systems. Int J Control. https://doi.org/10.1080/00207178008961054

    Article  MathSciNet  MATH  Google Scholar 

  106. Hwang C, Wang KY (1984) Optimal Routh approximations for continuous-time systems. Int J Syst Sci 15(3):249–259. https://doi.org/10.1080/00207728408926558

    Article  MATH  Google Scholar 

  107. Goyal R, Parmar G, Sikander A (2019) A new approach for simplification and control of linear time invariant systems. Microsyst Technol. https://doi.org/10.1007/s00542-018-4004-1

    Article  Google Scholar 

  108. Gutman P, Mannerfelt CF, Molander P (1982) Contributions to the model reduction problem. IEEE Trans Autom Control 27(2):454–455. https://doi.org/10.1109/TAC.1982.1102930

    Article  MATH  Google Scholar 

  109. Gustafson RD (1966) A paper and pencil control system design. J Fluids Eng Trans ASME 88(2):329–336. https://doi.org/10.1115/1.3645858

    Article  Google Scholar 

  110. Shamash Y, Smamash Y (1981) Truncation method of reduction: a viable alternative. Electron Lett 17(2):97–99. https://doi.org/10.1049/el:19810070

    Article  MathSciNet  Google Scholar 

  111. Prajapati AK, Prasad R (2019) Model order reduction by using the balanced truncation and factor division methods. IETE J Res 65(6):827–842. https://doi.org/10.1080/03772063.2018.1464971

    Article  Google Scholar 

  112. Davison EJ (1966) A method for simplifying linear dynamic systems. IEEE Trans Autom Control 11(1):93–101. https://doi.org/10.1109/TAC.1966.1098264

    Article  Google Scholar 

  113. Lucas TN (1983) Factor division: a useful algorithm in model reduction. IEE Proc D Control Theory Appl 130(6):362–364. https://doi.org/10.1049/ip-d.1983.0060

    Article  MATH  Google Scholar 

  114. Prajapati AK, Prasad R (2019) Reduced order modelling of linear time invariant systems using the factor division method to allow retention of dominant modes. IETE Tech Rev (Inst Electron Telecommun Eng, India) 36(5):449–462. https://doi.org/10.1080/02564602.2018.1503567

    Article  Google Scholar 

  115. Sikander A, Prasad R (2017) A new technique for reduced-order modelling of linear time-invariant system. IETE J Res 63(3):316–324. https://doi.org/10.1080/03772063.2016.1272436

    Article  Google Scholar 

  116. Wan BW (1981) Linear model reduction using Mihailov criterion and Padè approximation technique. Int J Control 33(6):1073–1089. https://doi.org/10.1080/00207178108922977

    Article  MATH  Google Scholar 

  117. Rana J (2013) Order reduction using Mihailov criterion and Pade approximations. Int J Innov Eng Technol 2:19–24

    Google Scholar 

  118. Tomar SK, Prasad R (2008) Linear model reduction using Mihailov stability criterion and continued fraction expansions. J Inst Eng India 84:7–10

  119. El-Attar RA, Vidyasagar M (1978) System order reduction using the induced operator norm and its applications to linear regulators. J Frankl Inst 306(6):457–474. https://doi.org/10.1016/0016-0032(78)90053-4

    Article  MATH  Google Scholar 

  120. Khademi G, Mohammadi H, Dehghani M (2013) LMI based model order reduction considering the minimum phase characteristic of the system. In: 2013 9th Asian control conference, ASCC 2013, pp 1–6. https://doi.org/10.1109/ASCC.2013.6606180

  121. Pal J, Ray LM (1980) Stable Padé approximants to multivariable systems using a mixed method. Proc IEEE 68(1):176–178. https://doi.org/10.1109/PROC.1980.11603

    Article  Google Scholar 

  122. Chen TC, Chang CY, Han KW (1980) Model reduction using the stability-equation method and the continued-fraction method. Int J Control 32(1):81–94. https://doi.org/10.1080/00207178008922845

    Article  MathSciNet  MATH  Google Scholar 

  123. Parthasarathy R (1982) System reduction using stability-equation method and modified cauer continued fraction. Proc IEEE 70(10):1234–1236. https://doi.org/10.1109/PROC.1982.12453

    Article  Google Scholar 

  124. Wittmuess P, Tarin C, Sawodny O (2015, December) Parametric modal analysis and model order reduction of systems with second order structure and non-vanishing first order term. In 2015 54th IEEE conference on decision and control (CDC). IEEE, pp 5352–5357. https://doi.org/10.1109/CDC.2015.7403057

  125. Rahrovani S, Vakilzadeh MK, Abrahamsson T (2014) A metric for modal truncation in model reduction problems part 1: performance and error analysis. In: Conference proceedings of the society for experimental mechanics series, pp 781–788. https://doi.org/10.1007/978-1-4614-6585-0_73

  126. Rózsa P, Sinha NK (1975) Minimal realization of a transfer function matrix in canonical forms. Int J Control. https://doi.org/10.1080/00207177508921986

    Article  MathSciNet  MATH  Google Scholar 

  127. De Schutter B, De Moor B (1995) Minimal realization in the max algebra is an extended linear complementarity problem. Syst Control Lett. https://doi.org/10.1016/0167-6911(94)00062-Z

    Article  MathSciNet  MATH  Google Scholar 

  128. Senkal D, Efimovskaya A, Shkel AM (2015, March) Minimal realization of dynamically balanced lumped mass WA gyroscope: dual foucault pendulum. In 2015 IEEE international symposium on inertial sensors and systems (ISISS) proceedings. IEEE, pp 1–2. https://doi.org/10.1109/ISISS.2015.7102394

  129. Aoki M (1968) Control of large-scale dynamic systems by aggregation. IEEE Trans Autom Control. https://doi.org/10.1109/TAC.1968.1098900

    Article  Google Scholar 

  130. Hickin J, Sinha NK (1975) Aggregation matrices for a class of low-order models for large-scale systems. Electron Lett. https://doi.org/10.1049/el:19750142

    Article  Google Scholar 

  131. Hwang C (1984) Aggregation matrix for the reduced-order modified Cauer CFE model. Electron Lett 20(4):150–151. https://doi.org/10.1049/el:19840100

    Article  Google Scholar 

  132. Bandler JW, Markettos ND, Sinha NK (1973) Optimum system modelling using recent gradient methods. Int J Syst Sci. https://doi.org/10.1080/00207727308919993

    Article  MATH  Google Scholar 

  133. Maurya MK, Kumar A (2017, April) Dimension reduction and controller design for large scale systems using balanced truncation. In 2017 1st international conference on electronics, materials engineering and nano-technology (IEMENTech). IEEE, pp 1–4. https://doi.org/10.1109/IEMENTECH.2017.8076972

  134. Zhou K, Salomon G, Wu E (1999) Balanced realization and model reduction for unstable systems. Int J Robust Nonlinear Control 9(3):183–198

    Article  MathSciNet  MATH  Google Scholar 

  135. Antoulas AC (2011) 8. Hankel-Norm approximation. In: Approximation of large-scale dynamical systems, society for industrial and applied mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)

  136. Cao X, Saltik MB, Weiland S (2019) Optimal Hankel norm model reduction for discrete-time descriptor systems. J Frankl Inst 356(7):4124–4143. https://doi.org/10.1016/j.jfranklin.2018.11.047

    Article  MathSciNet  MATH  Google Scholar 

  137. Liu Y, Anderson BDO (1989) Singular perturbation approximation of balanced systems. Int J Control 50(4):1379–1405. https://doi.org/10.1109/cdc.1989.70360

    Article  MathSciNet  MATH  Google Scholar 

  138. Guiver C (2019) The generalised singular perturbation approximation for bounded real and positive real control systems. Math Control Relat Fields 9(2):313–350. https://doi.org/10.3934/MCRF.2019016

    Article  MathSciNet  MATH  Google Scholar 

  139. Kumar D, Tiwari JP, Nagar SK (2012) Reducing order of large-scale systems by extended balanced singular perturbation approximation. Int J Autom Control 6(1):21–38. https://doi.org/10.1504/IJAAC.2012.045438

    Article  Google Scholar 

  140. Van Der Vorst HA (2000) Krylov subspace iteration. Comput Sci Eng. https://doi.org/10.1109/5992.814655

    Article  Google Scholar 

  141. Sorensen DC (2002) Numerical methods for large eigenvalue problems. Acta Numer. https://doi.org/10.1017/s0962492902000089

    Article  MathSciNet  MATH  Google Scholar 

  142. Grimme EJ (1997) Krylov projection methods for model reduction. University of Illinois at Urbana-Champaign

  143. Sambariya DK, Sharma O (2016) Routh approximation: an approach of model order reduction in SISO and MIMO systems. Indones J Electr Eng Comput Sci 2(3):486–500. https://doi.org/10.11591/ijeecs.v2.i3.pp486-500

    Article  Google Scholar 

  144. Antoulas AC, Sorensen DC, Gugercin S (2012) A survey of model reduction methods for large-scale systems

  145. Suman SK, Kumar A (2020) Higher-order reduction of linear system and design of controller. Sci J King Faisal Univ 2020(3):1–16

    Google Scholar 

  146. Boley D, Datta BN (1997) Numerical methods for linear control systems. In: Systems and control in the Twenty-First Century, Birkhäuser, Boston, MA, pp 51–74

  147. Suman SK, Kumar A (2020) Model order reduction of transmission line model. WSEAS Trans Circuits Syst 19:62–68. https://doi.org/10.37394/23201.2020.19.7

    Article  Google Scholar 

  148. Willcox KE, Peraire J (2002) Balanced model reduction via the proper introduction. AIAA J. https://doi.org/10.2514/2.1570

    Article  Google Scholar 

  149. Suman SK, Kumar A (2019) Investigation and reduction of large-scale dynamical systems. WSEAS Trans Syst 18:175–180

    Google Scholar 

  150. Dax A (2013) From Eigenvalues to singular values: a review. Adv Pure Math. https://doi.org/10.4236/apm.2013.39a2002

    Article  Google Scholar 

  151. Suman SK (2019) Approximation of large-scale dynamical systems for bench-mark collection. J Mech Continua Math Sci 14(3):196–215

    Google Scholar 

  152. Gugercin S, Antoulas AC (2006) Model reduction of large-scale systems by least squares. Linear Algebra Appl. https://doi.org/10.1016/j.laa.2004.12.022

    Article  MathSciNet  MATH  Google Scholar 

  153. Gupta AK, Samuel P, Kumar D (2019) A mixed-method for order reduction of linear time invariant systems using big bang-big crunch and Eigen spectrum algorithm. Int J Autom Control 13(2):158–175. https://doi.org/10.1504/ijaac.2019.10018127

    Article  Google Scholar 

  154. Benner P, Gugercin S, Willcox K (2013) A survey of model reduction methods for parametric systems. In: SIAM Review, Max Planck Institute for dynamics of complex technical systems, pp 1–36

  155. Singh J, Vishwakarma CB, Chattterjee K (2016) Biased reduction method by combining improved modified pole clustering and improved Pade approximations. Appl Math Model 40(2):1418–1426. https://doi.org/10.1016/j.apm.2015.07.014

    Article  MathSciNet  MATH  Google Scholar 

  156. Sandberg H, Rantzer A (2004) Balanced truncation of linear time-varying systems. IEEE Trans Autom Control 49(2):217–229. https://doi.org/10.1109/TAC.2003.822862

    Article  MathSciNet  MATH  Google Scholar 

  157. Mukherjee S, Mishra RN (1987) Order reduction of linear systems using an error minimization technique. J Frankl Inst. https://doi.org/10.1016/0016-0032(87)90037-8

    Article  MathSciNet  MATH  Google Scholar 

  158. Mittal AK, Prasad R, Sharma SP (2004) Reduction of linear dynamic systems using an error minimization technique. J Inst Eng Electr Eng Div 84:201–206

    Google Scholar 

  159. Moore BC (1981) Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans Autom Control 26(1):17–32. https://doi.org/10.1109/TAC.1981.1102568

    Article  MathSciNet  MATH  Google Scholar 

  160. Fernando KV, Nicholson H (1983) On the structure of balanced and other principal representations of SISO systems. IEEE Trans Autom Control 28(2):228–231. https://doi.org/10.1109/TAC.1983.1103195

    Article  MathSciNet  MATH  Google Scholar 

  161. Al-Saggaf UM, Franklin GF (1988) Model reduction via balanced realizations: an extension and frequency weighting techniques. IEEE Trans Autom Control 37(3):687–692. https://doi.org/10.1109/9.1280

    Article  MathSciNet  MATH  Google Scholar 

  162. Samar R, Postlethwaite I, Gu DW (1995) Model reduction with balanced realizations. Int J Control 62(1):33–64. https://doi.org/10.1080/00207179508921533

    Article  MathSciNet  MATH  Google Scholar 

  163. Clapperton B, Crusca F, Aldeen M (1996) Bilinear transformation and generalized singular perturbation model reduction. IEEE Trans Autom Control. https://doi.org/10.1109/9.489281

    Article  MathSciNet  MATH  Google Scholar 

  164. Glover K (1984) All optimal Hankel-norm approximations of linear multivariable systems and their L,∞-error bounds†. Int J Control 39(6):1115–1193. https://doi.org/10.1080/00207178408933239

    Article  MathSciNet  MATH  Google Scholar 

  165. Škatarić D, Kovačević NR (2010) The system order reduction via balancing in view of the method of singular perturbation. FME Trans 38(4):181–187

    Google Scholar 

  166. Benner P, Schneider A (2010) Balanced truncation model order reduction for LTI systems with many inputs or outputs. In: Proceedings of the 19th international symposium on mathematical theory of networks and systems–MTNS, pp 1971–1974, [Online]. Available: http://www.tu-chemnitz.de/mathematik/syrene/papers/BenS_2010_MTNS.pdf

  167. Yasuda M (2004) Spectral characterizations for hermitian centrosymmetric K-matrices and hermitian skew-centrosymmetric K-matrices. SIAM J Matrix Anal Appl 25(3):601–605. https://doi.org/10.1137/S0895479802418835

    Article  MathSciNet  MATH  Google Scholar 

  168. Prajapati AK, Prasad R (2020) Model reduction using the balanced truncation method and the Padé approximation method. IETE Tech Rev (Inst Electron Telecommun Eng, India). https://doi.org/10.1080/02564602.2020.1842257

    Article  Google Scholar 

  169. Ferranti F, Deschrijver D, Knockaert L, Dhaene T (2011) Data-driven parameterized model order reduction using z-domain multivariate orthonormal vector fitting technique. In: Lecture notes in electrical engineering, pp 141–148. https://doi.org/10.1007/978-94-007-0089-5_7

  170. Gugercin S, Antoulas AC (2004) A survey of model reduction by balanced truncation and some new results. Int J Control 77(8):748–766. https://doi.org/10.1080/00207170410001713448

    Article  MathSciNet  MATH  Google Scholar 

  171. Imran M, Ghafoor A, Sreeram V (2014) A frequency weighted model order reduction technique and error bounds. Automatica 50(12):3304–3309. https://doi.org/10.1016/j.automatica.2014.10.062

    Article  MathSciNet  MATH  Google Scholar 

  172. Lall S, Marsden JE, Glavaški S (2002) A subspace approach to balanced truncation for model reduction of nonlinear control systems. Int J Robust Nonlinear Control 12(6):519–535. https://doi.org/10.1002/rnc.657

    Article  MathSciNet  MATH  Google Scholar 

  173. Segalman DJ (2007) Model reduction of systems with localized nonlinearities. J Comput Nonlinear Dyn 2(3):249–266. https://doi.org/10.1115/1.2727495

    Article  Google Scholar 

  174. Pernebo L, Silverman LM (1982) Model reduction via balanced state space representations. IEEE Trans Autom Control 27(2):382–387. https://doi.org/10.1109/TAC.1982.1102945

    Article  MathSciNet  MATH  Google Scholar 

  175. Gugercin S (2008) An iterative SVD-Krylov based method for model reduction of large-scale dynamical systems. Linear Algebra Appl 428(9):1964–1986. https://doi.org/10.1016/j.laa.2007.10.041

    Article  MathSciNet  MATH  Google Scholar 

  176. Fernando KV, Nicholson H (1982) Singular perturbational model reduction of balanced systems. IEEE Trans Autom Control 27(2):466–468. https://doi.org/10.1109/TAC.1982.1102932

    Article  MATH  Google Scholar 

  177. Fernando KV, Nicholson H (1982) Singular perturbational model reduction in the frequency domain. IEEE Trans Autom Control 27(4):969–970. https://doi.org/10.1109/TAC.1982.1103037

    Article  MATH  Google Scholar 

  178. Kokotovic PV, O’Malley RE, Sannuti P (1976) Singular perturbations and order reduction in control theory—an overview. Automatica 12(2):123–132. https://doi.org/10.1016/0005-1098(76)90076-5

    Article  MathSciNet  MATH  Google Scholar 

  179. Gu DW, Petkov PH, Konstantinov MM (2013) Lower-order controllers. In: Advanced textbooks in control and signal processing, pp 73–91. Springer, London

  180. Safonov MG, Chiang RY (1989) A Schur method for balanced-truncation model reduction. IEEE Trans Autom Control 34(7):729–733. https://doi.org/10.1109/9.29399

    Article  MathSciNet  MATH  Google Scholar 

  181. Fernando KV, Nicholson H (1983) Singular perturbational approximations for discrete-time balanced systems. IEEE Trans Autom Control 28(2):240–242. https://doi.org/10.1109/TAC.1983.1103202

    Article  MATH  Google Scholar 

  182. Gajic Z, Lelic M (2001) Improvement of system order reduction via balancing using the method of singular perturbations. Automatica 37(11):1859–1865. https://doi.org/10.1016/S0005-1098(01)00139-X

    Article  MATH  Google Scholar 

  183. Vishwakarma CB, Prasad R (2009) MIMO system reduction using modified pole clustering and genetic algorithm. Model Simul Eng 2009:1–5. https://doi.org/10.1155/2009/540895

    Article  Google Scholar 

  184. Singh V, Chandra D, Kar H (2004) Improved Routh-Padé approximants: a computer-aided approach. IEEE Trans Autom Control 49(2):292–296. https://doi.org/10.1109/TAC.2003.822878

    Article  MATH  Google Scholar 

  185. Narwal A, Prasad BR (2016) A novel order reduction approach for LTI systems using cuckoo search optimization and stability equation. IETE J Res 62(2):154–163. https://doi.org/10.1080/03772063.2015.1075915

    Article  Google Scholar 

  186. Sikander A, Thakur P (2018) Reduced order modelling of linear time-invariant system using modified cuckoo search algorithm. Soft Comput 22(10):3449–3459. https://doi.org/10.1007/s00500-017-2589-4

    Article  Google Scholar 

  187. Sikander A, Thakur P, Bansal RC, Rajasekar S (2018) A novel technique to design cuckoo search based FOPID controller for AVR in power systems. Comput Electr Eng 70:261–274

    Article  Google Scholar 

  188. Pal J (1980) Suboptimal control using Pade approximation techniques. IEEE Trans Autom Control 25(5):1007–1008. https://doi.org/10.1109/TAC.1980.1102490

    Article  MathSciNet  MATH  Google Scholar 

  189. Pati A, Kumar A, Chandra D (2014) Suboptimal control using model order reduction. Chin J Eng 2014(2):1–5. https://doi.org/10.1155/2014/797581

    Article  Google Scholar 

  190. Sikander A, Rajendra Prasad B (2015) A novel order reduction method using cuckoo search algorithm. IETE J Res. https://doi.org/10.1080/03772063.2015.1009396

    Article  MATH  Google Scholar 

  191. Desai SR, Prasad R (2013) A novel order diminution of LTI systems using big bang big crunch optimization and Routh approximation. Appl Math Model 37(16–17):8016–8028. https://doi.org/10.1016/j.apm.2013.02.052

    Article  MathSciNet  MATH  Google Scholar 

  192. Parmar G, Ssi LM, Prasad R, Mukherjee S (2007) Order reduction of linear dynamic systems using stability equation method and GA. Int J Electr Robot Electron Commun Eng 1(1):26–32

    Google Scholar 

  193. Vishwakarma CBCB, Prasad R (2009) Clustering method for reducing order of linear system using Pade approximation. IETE J Res 54(5):326–330. https://doi.org/10.4103/0377-2063.48531

    Article  Google Scholar 

  194. Lavania S (2017) Hybrid techniques for reduction of linear time-invariant systems. J Simul Syst Sci Technol Int. https://doi.org/10.5013/ijssst.a.18.04.03

    Article  Google Scholar 

  195. Komarasamy R, Albhonso N, Gurusamy G (2012) Order reduction of linear systems with an improved pole clustering. J Vib Control 18(12):1876–1885. https://doi.org/10.1177/1077546311426592

    Article  MathSciNet  Google Scholar 

  196. Desai SR, Prasad R (2013) A new approach to order reduction using stability equation and big bang big crunch optimization. Syst Sci Control Eng 1(1):20–27. https://doi.org/10.1080/21642583.2013.804463

    Article  Google Scholar 

  197. Abu-Al-Nadi D (2011) Reduced order modeling of linear MIMO systems using particle swarm optimization. In: Seventh international conference on autonomous systems

  198. Vishwakarma CB (2011) Order reduction using modified pole clustering and Pade approximations. World Acad Sci Eng Technol 56:787–791

    Google Scholar 

  199. Mukherjee S, Mittal RC (2005) Model order reduction using response-matching technique. J Frankl Inst. https://doi.org/10.1016/j.jfranklin.2005.01.008

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar Suman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suman, S.K., Kumar, A. Investigation and Implementation of Model Order Reduction Technique for Large Scale Dynamical Systems. Arch Computat Methods Eng 29, 3087–3108 (2022). https://doi.org/10.1007/s11831-021-09690-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09690-8

Navigation