Skip to main content
Log in

Thermal Load Simulations in Railway Disc Brake: A Systematic Review of Modelling Temperature, Stress and Fatigue

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Disc brakes are the most important contributor of safety in railway vehicles. Appropriate modelling of heat input and boundary conditions in railway disc brake thermal load simulation plays a key role to predict exact results. Starting from early generation of railway technology, many researchers have dealt with FEM modelling, although lack of uniformity has been prevailing between them. Based on this problem, this review tries to answer the research question: “What FE boundary conditions and heat input modelling have been utilized in railway disc brake temperature, stress and fatigue simulations?”. Modelling effectiveness is evaluated based on boundary condition estimation, and spatial and time variation. The review is based on 49 significant publications available from 1995 to 2020. A method of systematic literature review is used to collect, identify and filter past and current trends in modelling. No study was revealed to incorporate all thermal modelling observed in actual braking conditions, including heat transfer modes, heat input calculations, heat applications, and its spatial and time variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wasilewski P (2020) Frictional Heating in Railway Brakes: A Review of Numerical Models. Arch Comput Methods Eng 27(1):45–58

    Article  MathSciNet  Google Scholar 

  2. Tirovic M (1998) Development of a wheel mounted disc brake for a high-speed train. Proc Inst Mech Eng Part F J Rail Rapid Transit 212(2):113–121

    Article  Google Scholar 

  3. Grivc U, Deržič D, Muhič S (2019) Numerical optimisation and experimental validation of divided rail freight brake disc crown. J Mod Transp 27(1):1–10

    Article  Google Scholar 

  4. Missori S, Sili A (1988) Optimizing proportions of railway brake discs by temperature transients evaluation. Proc Inst Mech Eng Part D Transp Eng 202(2):91–99

    Article  Google Scholar 

  5. Yang YC, Chen WL (2011) A nonlinear inverse problem in estimating the heat flux of the disc in a disc brake system. Appl Therm Eng 31(14–15):2439–2448

    Article  Google Scholar 

  6. Ghadimi B, Kowsary F, Khorami M (2013) Thermal analysis of locomotive wheel-mounted brake disc. Appl Therm Eng 51(1–2):948–952

    Article  Google Scholar 

  7. Yang Z, Han J, Li W, Li Z, Pan L, Shi X (2013) Analyzing the mechanisms of fatigue crack initiation and propagation in CRH EMU brake discs. Eng Fail Anal 34:121–128

    Article  Google Scholar 

  8. Rao VTVSR, Ramasubramanian H, Seetharamu KN (1989) Analysis of temperature field in brake disc for fade assessment. Wärme - und Stoffübertragung 24(1):9–17

    Article  Google Scholar 

  9. Song JH, Yoo SH, Oh DJ, Mishra D, Jo DH (2008) a Study on Partial Side Wears for the Brake System of Railway Vehicles 2, 1315–1321.

  10. Kim DJ, Seok CS, Koo JM, We WT, Goo BC, Won JI (2010) Fatigue life assessment for brake disc of railway vehicle. Fatigue Fract Eng Mater Struct 33(1):37–42

    Article  Google Scholar 

  11. Kao TK, Richmond JW, Douarre A (2000) Brake disc hot spotting and thermal judder: an experimental and finite element study. Int J Veh Des 23(3):276–296

    Article  Google Scholar 

  12. Meng D, Wang Z, Zhang L, Yu Z (2017) Influences of Initial DTV on Thermomechnical Coupling in Disc Brake System. SAE Tech Pap.

  13. Dufrénoy P, Weichert D (1995) Prediction of railway disc brake temperatures taking the bearing surface variations into account. Proc Inst Mech Eng Part F J Rail Rapid Transit 209(2):67–76

    Article  Google Scholar 

  14. Wang Z, Han J, Liu X, Li Z, Yang Z, Chen E (2019) Temperature evolution of the train brake disc during high-speed braking. Adv Mech Eng 11(1).

  15. Yevtushenko AA, Kuciej M (2012) One-dimensional thermal problem of friction during braking: The history of development and actual state. Int J Heat Mass Transf 55(15–16):4148–4153

    Article  Google Scholar 

  16. Nong XD, Jiang YL, Fang M, Yu L, Liu CY (2017) Numerical analysis of novel SiC3D/Al alloy co-continuous composites ventilated brake disc. Int J Heat Mass Transf 108:1374–1382

    Article  Google Scholar 

  17. Mahmoudi T, Parvizi A, Poursaeidi E, Rahi A (2015) Thermo-mechanical analysis of functionally graded wheel-mounted brake disk. J Mech Sci Technol 29(10):4197–4204

    Article  Google Scholar 

  18. Dufrénoy P (2004) Two-/three-dimensional hybrid model of the thermomechanical behaviour of disc brakes. Proc Inst Mech Eng Part F J Rail Rapid Transit 218(1):17–30

    Article  Google Scholar 

  19. Wang GS, Fu R, Zhao L (2011) Numerical modeling and simulation analysis of temperature field of disc brake on trains. Adv Mater Res 199–200:1492–1495

    Google Scholar 

  20. Tirovic M, Sarwar GA (2004) “Design synthesis of non-symmetrically loaded high-performance disc brakes part 2: Finite element modelling. Proc Inst Mech Eng Part F J Rail Rapid Transit 218(2):89–104

    Article  Google Scholar 

  21. Afzal A, Abdul Mujeebu M (2019) Thermo-mechanical and structural performances of automobile disc brakes: a review of numerical and experimental studies. Arch Comput Methods Eng 26(5):1489–1513

    Article  Google Scholar 

  22. Dufrénoy P, Weichert D (2003) A thermomechanical model for the analysis of disc brake fracture mechanisms. J Therm Stress 26(8):815–828

    Article  Google Scholar 

  23. Luo Z, Zuo J (2014) Conjugate heat transfer study on a ventilated disc of high-speed trains during braking. J Mech Sci Technol 28(5):1887–1897

    Article  Google Scholar 

  24. Modanloo A, Talaee MR (2020) Analytical thermal analysis of advanced disk brake in high speed vehicles. Mech Adv Mater Struct 27(3):209–217

    Article  Google Scholar 

  25. Bayat M, Alarifi IM, Khalili AA, El-Bagory TMAA, Nguyen HM, Asadi A (2019) Thermo-mechanical contact problems and elastic behaviour of single and double sides functionally graded brake disks with temperature-dependent material properties. Sci Rep 9(1)

  26. Yevtushenko AA, Grzes P (2010) The FEM-Modeling of the frictional heating phenomenon in the pad/disc tribosystem (A Review). Numer Heat Transf Part A Appl 58(3):207–226

    Article  Google Scholar 

  27. Yevtushenko AA, Kuciej M, Grzes P, Wasilewski P (2017) Temperature in the railway disc brake at a repetitive short-term mode of braking. Int Commun Heat Mass Transf 84:102–109

    Article  Google Scholar 

  28. Yu L, Jiang Y, Lu S, Ru H, Fang M (2012) FEM for brake discs of SiC 3D continuous ceramic reinforced 7075 Aluminum alloy for CRH3 trains applying Emergency Braking. Appl Mech Mater 120:51–55

    Article  Google Scholar 

  29. Spring LM, Marshall MR, Warner ET, Johnson KL (2011) Contact Mechanics-Cambridge University Press. Cambridge University Press, New York

    Google Scholar 

  30. Wu SC, Zhang SQ, Xu ZW (2016) Thermal crack growth-based fatigue life prediction due to braking for a high-speed railway brake disc. Int J Fatigue 87(March):359–369

    Article  Google Scholar 

  31. Ghadimi B, Sajedi R, Kowsary F (2013) 3D investigation of thermal stresses in a locomotive ventilated brake disc based on a conjugate thermo-fluid coupling boundary conditions. Int Commun Heat Mass Transf 49:104–109

    Article  Google Scholar 

  32. Jiguang C, Fei G (2015) Temperature field and thermal stress analyses of high-speed train brake disc under pad variations. Open Mech Eng J 9(1):371–378

    Article  Google Scholar 

  33. Grzes P, Oliferuk W, Adamowicz A, Kochanowski K, Wasilewski P, Yevtushenko AA (2016) The numerical-experimental scheme for the analysis of temperature field in a pad-disc braking system of a railway vehicle at single braking. Int Commun Heat Mass Transf 75:1–6

    Article  Google Scholar 

  34. Talati F, Jalalifar S (2008) Investigation of heat transfer phenomena in a ventilated disk brake rotor with straight radial rounded vanes. J Appl Sci 8(20):3583–3592

    Article  Google Scholar 

  35. García-León RA, Flórez-Solano E (2017) Análisis dinámico de tres frenos de disco autoventilados. Ing e Investig 37(3):102–114

    Google Scholar 

  36. León RAG, Rojas EP (2017) Análisis de la cantidad del flujo de calor entre canales de refrigeración en tres discos de frenos ventilados. Ing y Univ 21(1)

  37. Belhocine A, Bouchetara M (2014) Thermomechanical analysis of vehicle braking. UPB Sci Bull Ser D Mech Eng 76(1):71–84

    Google Scholar 

  38. Adamowicz A, Grzes P (2013) Finite element analysis of thermal stresses in a pad-disc brake system (a review). Acta Mech Autom 7(4):191–195

    Google Scholar 

  39. Yevtushenko AA, Grzes P, Adamowicz A (2015) Numerical analysis of thermal stresses in disk brakes and clutches (a review). Numer Heat Transf Part A Appl 67(2):170–188

    Article  Google Scholar 

  40. Moher D et al (2009) Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann Intern Med 151(4):264–269

    Article  Google Scholar 

  41. Benseddiq N, Weichert D, Seidermann J, Minet M (1996) Optimization of design of railway disc brake pads. Proc Inst Mech Eng Part F J Rail Rapid Transit 210(1):51–61

    Article  Google Scholar 

  42. Dufrénoy P, Bodovillé G, Degallaix G (2002) Damage mechanisms and thermomechanical loading of brake discs. European structural integrity society. Elsevier, Amsterdam, pp 167–176

    Google Scholar 

  43. Tirovic M, Sarwar GA (2004) Design synthesis of non-symmetrically loaded high-performance disc brakes part 3: Verification and optimization. Proc Inst Mech Eng Part F J Rail Rapid Transit 218(2):105–115

    Article  Google Scholar 

  44. Kim DJJ, Lee YMM, Park JSS, Seok CSS (2008) “Thermal stress analysis for a disk brake of railway vehicles with consideration of the pressure distribution on a frictional surface. Mater Sci Eng A 483–484(1–2):456–459

    Article  Google Scholar 

  45. Olshevskiy A, Olshevskiy A, Berdnikov O, Kim C-W (2012) Finite element analysis of railway disc brake considering structural, thermal, and wear phenomena. Proc Inst Mech Eng Part C J Mech Eng Sci 226(7):1845–1860

    Article  Google Scholar 

  46. Nong W, Gao F, Fu R, Han X (2012) Investigation of friction temperature in railway disc brake. Adv Mater Res 479–481:202–206

    Article  Google Scholar 

  47. Gao CH, Lin XZ (2002) Transient temperature field analysis of a brake in a non-axisymmetric three-dimensional model. J Mater Process Technol 129(1–3):513–517

    Article  Google Scholar 

  48. Tang L, Wang G (2012) Simulation analysis of train disc brake temperature field. In Proceedings of the 2012 International Conference on Computer Application and System Modeling, ICCASM 2012, 0718–0721.

  49. Hong H et al (2018) A study on an analysis model for the thermo-mechanical behavior of a solid disc brake for rapid transit railway vehicles. J Mech Sci Technol 32(7):3223–3231

    Article  Google Scholar 

  50. Zhang S et al (2019) Fatigue life calculation of high-power disc brake under thermal-mechanical coupling. IOP Conf Ser: Mater Sci Eng 692(1):012022

    Article  Google Scholar 

  51. Chen J, Gao F (2014) Thermo-mechanical simulation of brake disc frictional character by moment of inertia. Res J Appl Sci Eng Technol 7(2):227–232

    Article  Google Scholar 

  52. Cho SK, Choi JH, Lee YM, Seok CS (2007) Life evaluation of a disk brake of railway vehicles considering pressure distributions at a frictional surface. Key Eng Mater 353–358(1):303–306

    Article  Google Scholar 

  53. Zhang L, Yang Q, Weichert D, Tan N (2009) Simulation and Analysis of Thermal Fatigue Based on Imperfection Model of Brake Discs. Pamm 9(1):533–534

    Article  Google Scholar 

  54. Yu L, Jiang YL, Lu S, Luo K, Ru HQ (2011) Numerical simulation of brake discs of CRH3 high-speed trains based on Ansys. In Proceedings of the 1st World Congress on Integrated Computational Materials Engineering, ICME, 183–188.

  55. Li Z, Han J, Yang Z, Pan L (2014) The effect of braking energy on the fatigue crack propagation in railway brake discs. Eng Fail Anal 44:272–284

    Article  Google Scholar 

  56. Wu ML, Zhu XY, Zuo JY (2014) Secondary developments of ANSYS for temperature and stress field simulation of brake disc based on VB. Appl Mech Mater 597:540–543

    Article  Google Scholar 

  57. yi CHEN G et al (2019) Tribological properties and thermal-stress analysis of C/C-SiC composites during braking. Trans Nonferrous Met Soc China 29(1):123–131

    Article  Google Scholar 

  58. Tirovic M, Ali G (2001) Design synthesis of non-symmetrically loaded high-performance disc brakes Part 1. Proc Inst Mech Eng Part F J Rail Rapid Transit 215(2):101–109

    Article  Google Scholar 

  59. Nong W, Gao F, Fu R, Yu Q (2011) On structure function and the temperature and the thermal stress of brake discs. Appl Mech Mater 80–81:521–526

    Article  Google Scholar 

  60. Šamec B, Oder G, Lerher T, Potrč I (2011) Numerical analysis of railway brake disc. J Shanghai Jiaotong Univ 16(2):149–151

    Article  Google Scholar 

  61. Goo BC (2018) A study on the contact pressure and thermo-elastic behavior of a brake disc-pad by infrared images and finite element analysis. Appl Sci 8(9):1639

    Article  Google Scholar 

  62. Oder G, Reibenschuh M, Čuš F, Potrč I (2009) Modelling and analysis of thermal and stress loads in train disc brakes - Braking from 250 km/h to standstill. Stroj Vestnik/Journal Mech Eng 55(7–8):494–502

    Google Scholar 

  63. El Abdi R, Samrout H (1999) Anisothermal modelling applied to brake discs. Int J Non Linear Mech 34(5):795–805

    Article  MATH  Google Scholar 

  64. Jiang L, Jiang YL, Yu L, Su N, Ding YD (2012) Thermal analysis for brake disks of SiC/6061 Al alloy co-continuous composite for CRH3 during emergency braking considering airflow cooling. Trans Nonferrous Met Soc China 22(11):2783–2791

    Article  Google Scholar 

  65. Jiang L, Jiang Y, Yu L, Yang H, Li Z, Ding Y (2019) Thermo-mechanical coupling analyses for al alloy brake discs with Al2O3-SiC(3D)/al alloy composite wear-resisting surface layer for high-speed trains. Materials (Basel) 12(19).

  66. Tirovic M, Galindo-Lopez CH (2008) Convective heat dissipation from a wheel-hub-mounted railway brake disc. Proc Inst Mech Eng Part F J Rail Rapid Transit 222(4):355–365

    Article  Google Scholar 

  67. Tirović M (2009) Energy thrift and improved performance achieved through novel railway brake discs. Appl Energy 86(3):317–324

    Article  Google Scholar 

  68. Wu X, Zuo J, Wu M (2012) Heat simulation of high-speed train’s brake disc considering the wind speed of disc surface influence on convection coefficient. In Proceedings of the 2nd International Conference on Electronic and Mechanical Engineering and Information Technology, EMEIT 2012 7(7), 145–149.

  69. Oder G, Šamec B, Lerher T, Potrě I (2011) Numerical analysis of braking discs for a taurus class locomotive. J Shanghai Jiaotong Univ 16(3):320–323

    Article  Google Scholar 

  70. ANSYS I (2018) Coupled-field analysis guide

  71. Limpert R (1999) Brake design and safety 154(2). Society of Amomotive Engineers

  72. Limpert R (2011) Brake Design and Safety, Third Edition, 3rd ed. Warrendale, Pa. (400 Commonwealth Dr., Wallendale PA USA): Society of Automotive Engineers

  73. Rashid A, Strömberg N (2012) An Efficient Sequential Approach for Simulation of Thermal Stresses in Disc Brakes pp. 1–6

Download references

Acknowledgements

The authors are grateful to manifest their gratitude to African Railway Center of Excellence Staff who contributed to general administrative support for the success of this review.

Funding

This review received no specific donation from any funding organization in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kejela Temesgen Deressa.

Ethics declarations

Conflict of interest

The Authors announce that this review’s content has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deressa, K.T., Ambie, D.A. Thermal Load Simulations in Railway Disc Brake: A Systematic Review of Modelling Temperature, Stress and Fatigue. Arch Computat Methods Eng 29, 2271–2283 (2022). https://doi.org/10.1007/s11831-021-09662-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09662-y

Navigation