Skip to main content
Log in

Dynamic Load Identification for Mechanical Systems: A Review

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Due to the great challenges of measuring forces directly, identifying dynamic loads based on accessible responses is a crucial problem in engineering, helping ensure integrity and reliability of mechanical structures. Dynamic load identification is a difficult inverse problem due to matrix ill-posedness, noise-sensitivity and computational scale, especially in uncertain structures. Unexpected inaccurate or non-unique solutions may be found if these problems are not well addressed. During the past decades, many methods have been proposed to deal with these problems. This paper tries to provide a comprehensive review of techniques for dynamic load identification, including under ill-posedness and uncertain parameter processing; with an emphasis on the statistical, data science, machine learning, and artificial intelligence aspects. Classical physics-based dynamic load identification theories in frequency and time domain are also introduced. Research challenges and prospects of dynamic load identification in mechanical systems are discussed finally. This review may offer guidelines for dynamic load identification in practical complex structures, as well as possibilities for further researches. Some methods could have broader applicability to other inverse problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sanchez J, Benaroya H (2014) Review of force reconstruction techniques. J Sound Vib 333(14):2999

    Google Scholar 

  2. Wu S, Law S (2011) Vehicle axle load identification on bridge deck with irregular road surface profile. Eng Struct 33(2):591

    Google Scholar 

  3. Zheng S, Zhou L, Lian X, Li K (2011) Coherence analysis of the transfer function for dynamic force identification. Mech Syst Signal Process 25(6):2229

    Google Scholar 

  4. Acosta M, Kanarachos S (2018) Tire lateral force estimation and grip potential identification using Neural Networks. Ext Kalman Filter Recurs Least Squares Neu Comput Appl 30(11):3445

    Google Scholar 

  5. Trivailo P, Carn C (2006) The inverse determination of aerodynamic loading from structural response data using neural networks. Inv Prob Sci Eng 14(4):379

    MATH  Google Scholar 

  6. Nakamura T, Igawa H, Kanda A (2012) Inverse identification of continuously distributed loads using strain data. Aerosp Sci Technol 23(1):75

    Google Scholar 

  7. Ertveldt J, Pintelon R, Vanlanduit S (2016) Identification of unsteady aerodynamic forces from forced motion wind tunnel experiments, AIAA Journal pp. 3265–3273

  8. Maes K, Van Nimmen K, Gillijns S, Lombaert G (2017) Validation of time-delayed recursive force identification in structural dynamics. Procedia Eng 199:2154

    Google Scholar 

  9. Amiri AK, Bucher C (2017) A procedure for in situ wind load reconstruction from structural response only based on field testing data. J Wind Eng Ind Aerodyn 167:75

    Google Scholar 

  10. Li Y, Luo Y, Wan HP, Yun CB, Shen Y (2020) Identification of earthquake ground motion based on limited acceleration measurements of structure using Kalman filtering technique. Struct Cont Health Monit 27(1):e2464

    Google Scholar 

  11. Hollkamp JJ, Gordon RW (2008) Reduced-order models for nonlinear response prediction: implicit condensation and expansion. J Sound Vib 318(4–5):1139

    Google Scholar 

  12. He Z, Zhang Z, Li E (2019) Multi-source random excitation identification for stochastic structures based on matrix perturbation and modified regularization method. Mech Syst Signal Process 119:266

    Google Scholar 

  13. Hwang Js, Kareem A, Kim Wj (2009) Estimation of modal loads using structural response. J Sound Vib 326(3–5):522

    Google Scholar 

  14. Lai T, Yi TH, Li HN (2016) Parametric study on sequential deconvolution for force identification. J Sound Vib 377:76

    Google Scholar 

  15. Bartlett F, Flannelly W (1979) Model verification of force determination for measuring vibratory loads. J Am Helicopter Soc 24(2):10

    Google Scholar 

  16. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media

    MATH  Google Scholar 

  17. Dobson B, Rider E (1990) A review of the indirect calculation of excitation forces from measured structural response data. Proc Instit Mech Eng Part C: Mech Eng Sci 204(2):69

    Google Scholar 

  18. Hillary B, Ewins D (1984) The use of strain gauges in force determination and frequency response function measurements In: Proceedings of IMAC

  19. Turco E (2005) A strategy to identify exciting forces acting on structures. Int J Numer Meth Eng 64(11):1483

    MATH  Google Scholar 

  20. Qiu B, Zhang M, Li X, Qu X, Tong F (2020) Unknown impact force localisation and reconstruction in experimental plate structure using time-series analysis and pattern recognition. Int J Mech Sci 166:105231

    Google Scholar 

  21. Holzdeppe D, Öry H (1988) Reconstruction of instationary wind load distribution on structures from measured structural response time histories. J Wind Eng Ind Aerodyn 28(1–3):231

    Google Scholar 

  22. Hollandsworth P, Busby H (1989) Reconstruction of instationary wind load distribution on structures from measured structural response time histories. Int J Impact Eng 8(4):315

    Google Scholar 

  23. Inoue H, Harrigan JJ, Reid SR (2001) Review of inverse analysis for indirect measurement of impact force. Appl Mech Rev 54(6):503

    Google Scholar 

  24. Liu J, Sun X, Han X, Jiang C, Yu D (2015) Dynamic load identification for stochastic structures based on Gegenbauer polynomial approximation and regularization method. Mech Syst Signal Process 56:35

    Google Scholar 

  25. Lage Y, Maia N, Neves M, Ribeiro A (2013) Force identification using the concept of displacement transmissibility. J Sound Vib 332(7):1674

    Google Scholar 

  26. Inoue H, Ikeda N, Kishimoto K, Shibuya T, Koizumi T (1995) Inverse analysis of the magnitude and direction of impact force. JSME Int J Ser A, Mech Mat Eng 38(1):84

    Google Scholar 

  27. Uhl T (2007) The inverse identification problem and its technical application. Arch Appl Mech 77(5):325

    MATH  Google Scholar 

  28. Wei Y, Xie P, Zhang L (2016) Tikhonov regularization and randomized GSVD. SIAM J Matrix Analy Appl 37(2):649

    MathSciNet  MATH  Google Scholar 

  29. Chen Z, Qin L, Zhao S, Chan TH, Nguyen A (2019) Toward efficacy of piecewise polynomial truncated singular value decomposition algorithm in moving force identification. Adv Struct Eng 22(12):2687

    Google Scholar 

  30. Wensong J, Zhongyu W, Jing L (2018) A fractional-order accumulative regularization filter for force reconstruction. Mech Syst Signal Process 101:405

    Google Scholar 

  31. Wang L, Liu J, Lu ZR (2020) Bandlimited force identification based on sinc-dictionaries and Tikhonov regularization. J Sound Vib 464:114988

    Google Scholar 

  32. Wang L, Han X, Xie Y (2013) A new conjugate gradient method for solving multi-source dynamic load identification problem. Int J Mech Mater Des 9(3):191

    Google Scholar 

  33. Chen Z, Chan TH, Nguyen A (2018) Moving force identification based on modified preconditioned conjugate gradient method. J Sound Vib 423:100

    Google Scholar 

  34. Li Z, Feng Z, Chu F (2014) A load identification method based on wavelet multi-resolution analysis. J Sound Vib 333(2):381

    Google Scholar 

  35. Park Y, Reichel L, Rodriguez G, Yu X (2018) Parameter determination for Tikhonov regularization problems in general form. J Comput Appl Math 343:12

    MathSciNet  MATH  Google Scholar 

  36. Chen Z, Chan TH (2017) A truncated generalized singular value decomposition algorithm for moving force identification with ill-posed problems. J Sound Vib 401:297

    Google Scholar 

  37. Aucejo M, De Smet O (2018) A space-frequency multiplicative regularization for force reconstruction problems. Mech Syst Signal Process 104:1

    Google Scholar 

  38. Aucejo M, De Smet O, De JF (2019) On a space-time regularization for force reconstruction problems. Mech Syst Signal Process 118:549

    Google Scholar 

  39. Wang L, Liu Y (2020) A novel method of distributed dynamic load identification for aircraft structure considering multi-source uncertainties, Structural and Multidisciplinary Optimization pp. 1–24

  40. Liu J, Meng X, Xu C, Zhang D, Jiang C (2018) Forward and inverse structural uncertainty propagations under stochastic variables with arbitrary probability distributions. Comput Methods Appl Mech Eng 342:287

    MathSciNet  MATH  Google Scholar 

  41. Liu J, Han X, Jiang C, Ning H, Bai Y (2011) Dynamic load identification for uncertain structures based on interval analysis and regularization method. Int J Comput Methods 8(04):667

    MathSciNet  MATH  Google Scholar 

  42. Vigsø M, Brincker R, Georgakis C (2019) Evaluating the Effect of Modelling Errors in Load Identification Using Classical Identification Methods, Shock and Vibration 2019

  43. Zhang E, Antoni J, Feissel P (2012) Bayesian force reconstruction with an uncertain model. J Sound Vib 331(4):798

    Google Scholar 

  44. Aucejo M, De Smet O (2018) On a full Bayesian inference for force reconstruction problems. Mech Syst Signal Process 104:36

    Google Scholar 

  45. Lourens E, Reynders E, De Roeck G, Degrande G, Lombaert G (2012) An augmented Kalman filter for force identification in structural dynamics. Mech Syst Signal Process 27:446

    Google Scholar 

  46. Azam SE, Chatzi E, Papadimitriou C (2015) A dual Kalman filter approach for state estimation via output-only acceleration measurements. Mech Syst Signal Process 60:866

    Google Scholar 

  47. Jang T, Baek H, Han S, Kinoshita T (2010) Indirect measurement of the impulsive load to a nonlinear system from dynamic responses: inverse problem formulation. Mech Syst Signal Process 24(6):1665

    Google Scholar 

  48. Jang T, Baek H, Choi HS, Lee SG (2011) A new method for measuring nonharmonic periodic excitation forces in nonlinear damped systems. Mech Syst Signal Process 25(6):2219

    Google Scholar 

  49. Jang T (2013) A method for simultaneous identification of the full nonlinear damping and the phase shift and amplitude of the external harmonic excitation in a forced nonlinear oscillator. Comput Struct 120:77

    Google Scholar 

  50. Lei Y, Wu Y, Li T (2012) Identification of non-linear structural parameters under limited input and output measurements. Int J Non-Linear Mech 47(10):1141

    Google Scholar 

  51. Ma CK, Ho CC (2004) An inverse method for the estimation of input forces acting on non-linear structural systems. J Sound Vib 275(3–5):953

    Google Scholar 

  52. Guo L, Ding Y, Wang Z, Xu G, Wu B (2018) A dynamic load estimation method for nonlinear structures with unscented Kalman filter. Mech Syst Signal Process 101:254

    Google Scholar 

  53. Lourens E, Papadimitriou C, Gillijns S, Reynders E, De Roeck G, Lombaert G (2012) Joint input-response estimation for structural systems based on reduced-order models and vibration data from a limited number of sensors. Mech Syst Signal Process 29:310

    Google Scholar 

  54. Cao X, Sugiyama Y, Mitsui Y (1998) Application of artificial neural networks to load identification. Comput Struct 69(1):63

    MATH  Google Scholar 

  55. Staszewski WJ, Worden K, Wardle R, Tomlinson GR (2000) Fail-safe sensor distributions for impact detection in composite materials. Smart Mater Struct 9(3):298

    Google Scholar 

  56. Qiu B, Zhang M, Xie Y, Qu X, Li X (2019) Localisation of unknown impact loads on a steel plate using a pattern recognition method combined with the similarity metric via structural stress responses in the time domain. Mech Syst Signal Process 128:429

    Google Scholar 

  57. Prawin J, Rao ARM (2018) An online input force time history reconstruction algorithm using dynamic principal component analysis. Mech Syst Signal Process 99:516

    Google Scholar 

  58. Ghajari M, Sharif-Khodaei Z, Aliabadi M, Apicella A (2013) Identification of impact force for smart composite stiffened panels. Smart Mater Struct 22(8):085014

    Google Scholar 

  59. Bangji Z, Shouyu Z, Qingxi X, Nong Z (2017) Load identification of virtual iteration based on Tikhonov regularization and model reduction, Hong Kong Load identification of virtual iteration based on Tikhonov regularization and model reduction. J Soc Sci 44(2)

  60. Kay SM (1993) Fundamentals of statistical signal processing. Prentice Hall PTR

    MATH  Google Scholar 

  61. Body CY (2014) Load identifcation for BEV based on power spectrum decomposition under road excitation, SAE Technical Paper 2014-01-2044. https://doi.org/10.4271/2014-01-2044

  62. Meriam JL, Kraige LG (2012) Engineering mechanics: dynamics, vol 2. Wiley

    MATH  Google Scholar 

  63. Williams Jr JH (2019) Fundamentals of applied dynamics . MIT Press

  64. Lu Z, Law S (2007) Identification of system parameters and input force from output only. Mech Syst Signal Process 21(5):2099

    Google Scholar 

  65. Strang G, Introduction to linear algebra, vol. 3 Wellesley, MA: Wellesley-Cambridge Press

  66. Hildebrand FB (1987) Introduction to numerical analysis. Courier Corporation

    MATH  Google Scholar 

  67. Jia Y, Yang Z, Guo N, Wang L (2015) Random dynamic load identification based on error analysis and weighted total least squares method. J Sound Vib 358:111

    Google Scholar 

  68. Jia Y, Yang Z, Song Q (2015) Experimental study of random dynamic loads identification based on weighted regularization method. J Sound Vib 342:113

    Google Scholar 

  69. Casella G, Berger RL (2002) Statistical inference, vol 2. Duxbury Pacific Grove, CA

    MATH  Google Scholar 

  70. Lehmann EL, Casella G (2006) Theory of point estimation. Springer Science & Business Media

    MATH  Google Scholar 

  71. Anderson T (2003) An introduction to multivariate statistical analysis. Wiley, New York

    MATH  Google Scholar 

  72. Lin J, Zhang Y, Zhao Y (2011) Pseudo excitation method and some recent developments. Proc Eng 14:2453

    Google Scholar 

  73. Lin J, Guo X, Zhi H, Howson WP, Williams FW (2001) Computer simulation of structural random loading identification. Comput Struct 79(4):375

    Google Scholar 

  74. Bühlmann P, Van De Geer S (2011) Statistics for high-dimensional data: methods, theory and applications. Springer Science & Business Media

    MATH  Google Scholar 

  75. Newland D (2013) Mechanical Vibration Analysis and Computation. Courier Corporation

    Google Scholar 

  76. Benaroya H, Nagurka M, Han S (2017) Mechanical vibration: analysis, uncertainties, and control. CRC Press

    Google Scholar 

  77. Den Hartog JP (1985) Mechanical vibrations. Courier Corporation

    MATH  Google Scholar 

  78. Lalanne C (2002) Mechanical vibration & shock. Wiley Online Library

    Google Scholar 

  79. Law SS, Bu JQ, Zhu X (2005) Time-varying wind load identification from structural responses. Eng Struct 27(10):1586

    Google Scholar 

  80. Callier FM, Desoer CA (2012) Linear system theory. Springer Science & Business Media

    MATH  Google Scholar 

  81. Baake SU (2011) Michael, The Peano-Baker series. Proc Steklov Instit Math 275:155–159. https://doi.org/10.1134/S0081543811080098

    Article  MATH  Google Scholar 

  82. Dacunha JJ (2005) Transition matrix and generalized matrix exponential via the Peano-Baker series. J Diff Equ Appl 11(15):1245

    MathSciNet  MATH  Google Scholar 

  83. Liu J, Sun X, Han X, Jiang C, Yu D (2014) A novel computational inverse technique for load identification using the shape function method of moving least square fitting. Comput Struct 144:127

    Google Scholar 

  84. Anil BM, Chopra K (2005) Dynamics of Structures, Pearson Education India

  85. Meirovitch L (1986) Elements of vibration analysis. McGraw-Hill

    MATH  Google Scholar 

  86. Allison TC, Miller AK, Inman DJ (2008) A deconvolution-based approach to structural dynamics system identification and response prediction. J vibration and acoustics 130(3)

  87. Liu J, Meng X, Jiang C, Han X, Zhang D (2016) Time-domain Galerkin method for dynamic load identification. Int J Numer Meth Eng 105(8):620

    MathSciNet  Google Scholar 

  88. Wang T, Wan Z, Wang X, Hu Y (2015) A novel state space method for force identification based on the Galerkin weak formulation. Comput Struct 157:132

    Google Scholar 

  89. Liu J, Li B (2018) A novel strategy for response and force reconstruction under impact excitation. J Mech Sci Technol 32(8):3581

    MathSciNet  Google Scholar 

  90. Li X, Zhao H, Chen Z, Wang Q, Chen Ja, Duan D (2018) Force identification based on a comprehensive approach combining Taylor formula and acceleration transmissibility. Inverse Problems in Science and Engineering 26(11):1612

    MathSciNet  MATH  Google Scholar 

  91. Lai T, Yi TH, Li HN, Fu X (2017) An explicit fourth-order Runge-Kutta method for dynamic force identification. Int J Struct Stab Dyn 17(10):1750120

    MathSciNet  Google Scholar 

  92. Li Q, Lu Q (2018) A hierarchical Bayesian method for vibration-based time domain force reconstruction problems. J Sound Vib 421:190

    Google Scholar 

  93. Jacquelin E, Bennani A, Hamelin P (2003) Force reconstruction: analysis and regularization of a deconvolution problem. J Sound Vib 265(1):81

    Google Scholar 

  94. Yu L, Chan TH (2003) Moving force identification based on the frequency-time domain method. J Sound Vib 261(2):329

    Google Scholar 

  95. Khoo S, Ismail Z, Kong K, Ong Z, Noroozi S, Chong W, Rahman A (2014) Impact force identification with pseudo-inverse method on a lightweight structure for under-determined, even-determined and over-determined cases. Int J Impact Eng 63:52

    Google Scholar 

  96. Liu J, Meng X, Zhang D, Jiang C, Han X (2017) An efficient method to reduce ill-posedness for structural dynamic load identification. Mech Syst Signal Process 95:273

    Google Scholar 

  97. Zhu T, Xiao Sn, Yang Gw (2014) Force identification in time domain based on dynamic programming. Appl Math Comput 235:226

    MathSciNet  MATH  Google Scholar 

  98. Aucejo M (2014) Structural source identification using a generalized Tikhonov regularization. J Sound Vib 333(22):5693

    Google Scholar 

  99. Qiao B, Mao Z, Liu J, Zhao Z, Chen X (2019) Group sparse regularization for impact force identification in time domain. J Sound Vib 445:44

    Google Scholar 

  100. Huang C, Wang L, Fu M, Lu ZR, Chen Y (2020) A novel iterative integration regularization method for ill-posed inverse problems. Eng Comput pp. 1–21

  101. Wang L, Xu L, Xie Y, Du Y, Han X (2019) A new hybrid conjugate gradient method for dynamic force reconstruction. Adv Mech Eng 11(1):1687814018822360

    Google Scholar 

  102. Strang G, Linear algebra and learning from data, Wellesley-Cambridge Press

  103. Hansen PC (1990) Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank. SIAM J Sci Stat Comput 11(3):503

    MathSciNet  MATH  Google Scholar 

  104. Hansen PC (2005) Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion, vol 4. Siam

    Google Scholar 

  105. Xu P (1998) Truncated SVD methods for discrete linear ill-posed problems. Geophys J Int 135(2):505

    Google Scholar 

  106. He Z, Lin X, Li E (2019) A non-contact acoustic pressure-based method for load identification in acoustic-structural interaction system with non-probabilistic uncertainty. Appl Acoust 148:223

    Google Scholar 

  107. Reichel L, Sadok H (2008) A new L-curve for ill-posed problems. J Comput Appl Math 219(2):493

    MathSciNet  MATH  Google Scholar 

  108. Hansen PC, Mosegaard K (1996) Piecewise polynomial solutions without a priori break points. Num Linear Algebra With Applications 3(6):513

    MathSciNet  MATH  Google Scholar 

  109. Hansen PC (1989) Regularization GSVD and truncatedGSVD. BIT Num Math 29(3):491

    MATH  Google Scholar 

  110. Dykes L, Reichel L (2014) Simplified GSVD computations for the solution of linear discrete ill-posed problems. J Comput Appl Math 255:15

    MathSciNet  MATH  Google Scholar 

  111. Gunawan FE (2012) Levenberg-Marquardt iterative regularization for the pulse-type impact-force reconstruction. J Sound Vib 331(25):5424

    Google Scholar 

  112. Nordberg TP, Gustafsson I (2006) Using QR factorization and SVD to solve input estimation problems in structural dynamics. Comput Methods Appl Mech Eng 195(44–47):5891

    MathSciNet  MATH  Google Scholar 

  113. Morigi S, Reichel L, Sgallari F (2006) A truncated projected SVD method for linear discrete ill-posed problems. Num Algor 43(3):197

    MathSciNet  MATH  Google Scholar 

  114. Kilmer ME, Hansen PC, Espanol MI (2007) A projection-based approach to general-form Tikhonov regularization. SIAM J Sci Comput 29(1):315

    MathSciNet  MATH  Google Scholar 

  115. González A, Rowley C, OBrien EJ (2008) A general solution to the identification of moving vehicle forces on a bridge. Int J Numer Meth Eng 75(3):335

    MATH  Google Scholar 

  116. Noschese S, Reichel L (2016) Some matrix nearness problems suggested by Tikhonov regularization. Linear Algebra Appl 502:366

    MathSciNet  MATH  Google Scholar 

  117. Aucejo M, De Smet O (2017) A multiplicative regularization for force reconstruction. Mech Syst Signal Process 85:730

    Google Scholar 

  118. Mao Y, Guo X, Zhao Y (2010) A state space force identification method based on Markov parameters precise computation and regularization technique. J Sound Vib 329(15):3008

    Google Scholar 

  119. Nikolova M (2004) A variational approach to remove outliers and impulse noise. J Math Imaging Vision 20(1–2):99

    MathSciNet  MATH  Google Scholar 

  120. Aucejo M, De Smet O (2016) Bayesian source identification using local priors. Mech Syst Signal Process 66:120

    Google Scholar 

  121. Hochstenbach ME, Reichel L, Rodriguez G (2015) Regularization parameter determination for discrete ill-posed problems. J Comput Appl Math 273:132

    MathSciNet  MATH  Google Scholar 

  122. Hansen PC, Jensen TK, Rodriguez G (2007) An adaptive pruning algorithm for the discrete L-curve criterion. J Comput Appl Math 198(2):483

    MathSciNet  MATH  Google Scholar 

  123. Reichel L, Rodriguez G (2013) Old and new parameter choice rules for discrete ill-posed problems. Num Algor 63(1):65

    MathSciNet  MATH  Google Scholar 

  124. Hansen PC (2007) Regularization tools version 4.0 for Matlab 7.3. Numerical algorithms 46(2):189

    MathSciNet  MATH  Google Scholar 

  125. Liu Y, Shepard WS Jr (2005) Dynamic force identification based on enhanced least squares and total least-squares schemes in the frequency domain. J Sound Vib 282(1–2):37

    Google Scholar 

  126. Antoni J (2012) A Bayesian approach to sound source reconstruction: optimal basis, regularization, and focusing. J Acoustical Soc Am 131(4):2873

    Google Scholar 

  127. He Z, Zhang Z, Li E (2020) Random dynamic load identification for stochastic structural-acoustic system using an adaptive regularization parameter and evidence theory, Journal of Sound and Vibration p. 115188

  128. Wang L, Liu J, Xie Y, Gu Y (2018) A new regularization method for the dynamic load identification of stochastic structure. Comput Math Appl 76(4):741

    MathSciNet  MATH  Google Scholar 

  129. Wang L, Cao H, Xie Y (2015) An improved iterative Tikhonov regularization method for solving the dynamic load identification problem. Int J Comput Methods Eng Sci Mech 16(5):292

    MathSciNet  Google Scholar 

  130. Wang L, Xie Y, Wu Z, Du Y, He K (2019) A new fast convergent iteration regularization method. Eng Comput 35(1):127

    Google Scholar 

  131. Qiao B, Liu J, Liu J, Yang Z, Chen X (2019) An enhanced sparse regularization method for impact force identification. Mech Syst Signal Process 126:341

    Google Scholar 

  132. Donoho DL (2006) For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Commun Pure Appl Math A J Issued Courant Instit Math Sci 59(6):797

    MathSciNet  MATH  Google Scholar 

  133. Koh K, Kim SJ, Boyd S (2007) An interior-point method for large-scale l1-regularized logistic regression. J Machine Learn Res 8(Jul):1519

  134. Qiao B, Zhang X, Gao J, Liu R, Chen X (2017) Sparse deconvolution for the large-scale ill-posed inverse problem of impact force reconstruction. Mech Syst Signal Process 83:93

    Google Scholar 

  135. Daubechies I, Defrise M, De Mol C (2004) An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun Pure Appl Math A J Issued by the Courant Instit Mathem Sci 57(11):1413

    MathSciNet  MATH  Google Scholar 

  136. Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2(1):183

    MathSciNet  MATH  Google Scholar 

  137. Qiao B, Zhang X, Gao J, Chen X (2016) Impact-force sparse reconstruction from highly incomplete and inaccurate measurements. J Sound Vib 376:72

    Google Scholar 

  138. Pan CD, Yu L, Liu HL, Chen ZP, Luo WF (2018) Moving force identification based on redundant concatenated dictionary and weighted l1-norm regularization. Mech Syst Signal Process 98:32

    Google Scholar 

  139. Bruckstein AM, Donoho DL, Elad M (2009) From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review 51(1):34

    MathSciNet  MATH  Google Scholar 

  140. Tropp JA, Wright SJ (2010) Computational methods for sparse solution of linear inverse problems. Proc IEEE 98(6):948

    Google Scholar 

  141. Figueiredo MA, Nowak RD, Wright SJ (2007) Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J Selected Top Signal Proces 1(4):586

    Google Scholar 

  142. Qiao B, Zhang X, Wang C, Zhang H, Chen X (2016) Sparse regularization for force identification using dictionaries. J Sound Vib 368:71

    Google Scholar 

  143. Wright SJ, Nowak RD, Figueiredo MA (2009) Sparse reconstruction by separable approximation. IEEE Trans Signal Process 57(7):2479

    MathSciNet  MATH  Google Scholar 

  144. Rezayat A, Nassiri V, De Pauw B, Ertveldt J, Vanlanduit S, Guillaume P (2016) Identification of dynamic forces using group-sparsity in frequency domain. Mech Syst Signal Process 70:756

    Google Scholar 

  145. Wambacq J, Maes K, Rezayat A, Guillaume P, Lombaert G (2019) Localization of dynamic forces on structures with an interior point method using group sparsity. Mech Syst Signal Process 115:593

    Google Scholar 

  146. Chang X, Yan Y, Wu Y (2019) Study on solving the ill-posed problem of force load reconstruction. J Sound Vib 440:186

    Google Scholar 

  147. Lu Z, Chen X (2018) Generalized conjugate gradient methods for l1 regularized convex quadratic programming with finite convergence. Math Operat Res 43(1):275

    MATH  Google Scholar 

  148. Wei Z, Yao S, Liu L (2006) The convergence properties of some new conjugate gradient methods. Appl Math Comput 183(2):1341

    MathSciNet  MATH  Google Scholar 

  149. Wang L, Cao H, Han X, Liu J, Xie Y (2015) An efficient conjugate gradient method and application to dynamic force reconstruction. J comput Sci 8:101

    MathSciNet  Google Scholar 

  150. Samagassi S, Khamlichi A, Driouach A, Jacquelin E (2015) Reconstruction of multiple impact forces by wavelet relevance vector machine approach. J Sound Vib 359:56

    Google Scholar 

  151. Tran H, Inoue H (2018) Impact force reconstruction using wavelet deconvolution technique. ASEAN Eng. J. 8(1):53

    Google Scholar 

  152. Gunawan FE, Homma H, Kanto Y (2006) Two-step B-splines regularization method for solving an ill-posed problem of impact-force reconstruction. J Sound Vib 297(1–2):200

    Google Scholar 

  153. Qiao B, Chen X, Xue X, Luo X, Liu R (2015) The application of cubic B-spline collocation method in impact force identification. Mech Syst Signal Process 64:413

    Google Scholar 

  154. Hu N, Fukunaga H, Matsumoto S, Yan B, Peng X (2007) An efficient approach for identifying impact force using embedded piezoelectric sensors. Int J Impact Eng 34(7):1258

    Google Scholar 

  155. Sun R, Chen G, He H, Zhang B (2014) The impact force identification of composite stiffened panels under material uncertainty. Finite Elem Anal Des 81:38

    Google Scholar 

  156. Yan G, Zhou L (2009) Impact load identification of composite structure using genetic algorithms. J Sound Vib 319(3–5):869

    Google Scholar 

  157. Zhou J, Dong L, Guan W, Yan J (2019) Impact load identification of nonlinear structures using deep Recurrent Neural Network. Mech Syst Signal Process 133:106292

    Google Scholar 

  158. Lu K, Jin Y, Chen Y, Yang Y, Hou L, Zhang Z, Li Z, Fu C (2019) Review for order reduction based on proper orthogonal decomposition and outlooks of applications in mechanical systems. Mech Syst Signal Process 123:264

    Google Scholar 

  159. Pan C, Yu L (2019) Identification of external forces via truncated response sparse decomposition under unknown initial conditions. Adv Struct Eng 22(15):3161

    Google Scholar 

  160. Zhou K, Zhang S, Huang Z, Zhang J (2019) An improved TSVD-GCV inversion algorithm of pore size distribution in time-domain induced polarization using migration Hankel matrix. J Petrol Sci Eng 183:106368

    Google Scholar 

  161. Cheng W, Hu Q, Li D (2019) A fast conjugate gradient algorithm with active set prediction for l1 optimization. Optim Meth Software 34(6):1277

    MATH  Google Scholar 

  162. Wipf D, Nagarajan S (2010) Iterative reweighted l1 and l2 methods for finding sparse solutions. IEEE J Select Topics Signal Proces 4(2):317

    Google Scholar 

  163. Liu J, Sun X, Li K, Jiang C, Han X (2015) A probability density function discretization and approximation method for the dynamic load identification of stochastic structures. J Sound Vib 357:74

    Google Scholar 

  164. Wang L, Liu Y, Liu Y (2019) An inverse method for distributed dynamic load identification of structures with interval uncertainties. Adv Eng Softw 131:77

    Google Scholar 

  165. Liu J, Sun X, Meng X, Li K, Zeng G, Wang X (2016) A novel shape function approach of dynamic load identification for the structures with interval uncertainty. Int J Mech Mater Des 12(3):375

    Google Scholar 

  166. Xu M, Huang J, Wang C, Li Y (2020) Fuzzy identification of dynamic loads in presence of structural epistemic uncertainties. Comput Methods Appl Mech Eng 360:112718

    MathSciNet  MATH  Google Scholar 

  167. Zhang FL, Ni YC, Au SK, Lam HF (2016) Fast Bayesian approach for modal identification using free vibration data. Part I-Most probable value, Mech Syst Signal Proces 70:209

    Google Scholar 

  168. Ni YC, Zhang FL, Lam HF, Au SK (2016) Fast Bayesian approach for modal identification using free vibration data, Part II-Posterior uncertainty and application. Mech Syst Signal Process 70:221

    Google Scholar 

  169. Sun X, Liu J, Ding F, Wang X (2014) Identification method of dynamic loads for stochastic structures based on matrix perturbation theory. J Mech Eng 50(13):148

    Google Scholar 

  170. Zhang G, Song M, Liu M (2015) Asymptotical stability of the exact solutions and the numerical solutions for a class of impulsive differential equations. Appl Math Comput 258:12

    MathSciNet  MATH  Google Scholar 

  171. Xu M, Du J, Wang C, Li Y, Chen J (2019) A dual-layer dimension-wise fuzzy finite element method (DwFFEM) for the structural-acoustic analysis with epistemic uncertainties. Mech Syst Signal Process 128:617

    Google Scholar 

  172. Faure C, Ablitzer F, Antoni J, Pezerat C (2017) Empirical and fully Bayesian approaches for the identification of vibration sources from transverse displacement measurements. Mech Syst Signal Process 94:180

    Google Scholar 

  173. Aucejo M, De Smet O (2019) An optimal Bayesian regularization for force reconstruction problems. Mech Syst Signal Process 126:98

    Google Scholar 

  174. Nadarajah S (2005) A generalized normal distribution. J Appl Statisti 32(7):685

    MathSciNet  MATH  Google Scholar 

  175. Li Q, Lu Q (2019) A revised time domain force identification method based on Bayesian formulation. Int J Numer Meth Eng 118(7):411

    MathSciNet  Google Scholar 

  176. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2013) Bayesian data analysis. CRC Press

    MATH  Google Scholar 

  177. Møller J (2013) Spatial statistics and computational methods, vol 173. Springer Science & Business Media

    Google Scholar 

  178. Brooks S, Gelman A, Jones G, Meng XL (2011) Handbook of markov chain monte carlo. CRC Press

    MATH  Google Scholar 

  179. Ching J, Beck JL, Porter KA (2006) Bayesian state and parameter estimation of uncertain dynamical systems. Probab Eng Mech 21(1):81

    Google Scholar 

  180. Liu JJ, Ma CK, Kung IC, Lin DC (2000) Input force estimation of a cantilever plate by using a system identification technique. Comput Methods Appl Mech Eng 190(11–12):1309

    MATH  Google Scholar 

  181. Cumbo R, Tamarozzi T, Janssens K, Desmet W (2019) Kalman-based load identification and full-field estimation analysis on industrial test case. Mech Syst Signal Process 117:771

    Google Scholar 

  182. Risaliti E, Van Cauteren J, Tamarozzi T, Cornelis B, Desmet W (2016) In international conference on noise and vibration engineering (ISMA2016). Belgium, Leuven

    Google Scholar 

  183. Azam SE, Chatzi E, Papadimitriou C, Smyth A (2017) Experimental validation of the Kalman-type filters for online and real-time state and input estimation. J Vib Control 23(15):2494

    Google Scholar 

  184. Naets F, Cuadrado J, Desmet W (2015) Stable force identification in structural dynamics using Kalman filtering and dummy-measurements. Mech Syst Signal Process 50:235

    Google Scholar 

  185. Hanke M, Neubauer A, Scherzer O (1995) A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer Math 72(1):21

    MathSciNet  MATH  Google Scholar 

  186. Li L, Han B, Wang W (2007) RK type Landweber method for nonlinear ill-posed problems. J Comput Appl Math 206(1):341

    MathSciNet  MATH  Google Scholar 

  187. Wang W, Han B (2009) An implicit Landweber method for nonlinear ill-posed operator equations. J Comput Appl Math 230(2):607

    MathSciNet  MATH  Google Scholar 

  188. Yang JN, Lin S (2004) On-line identification of non-linear hysteretic structures using an adaptive tracking technique. Int J Non-Linear Mech 39(9):1481

    MATH  Google Scholar 

  189. Wu M, Smyth A (2008) Real-time parameter estimation for degrading and pinching hysteretic models. Int J Non-Linear Mech 43(9):822

    Google Scholar 

  190. Chatzi EN, Smyth AW (2008) The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non-collocated heterogeneous sensing. Struct Cont Health Monit 16(1):99

    Google Scholar 

  191. Radhika B, Manohar C (2013) Dynamic state estimation for identifying earthquake support motions in instrumented structures. Earthquakes Struct 5(3):359

    Google Scholar 

  192. Ching J, Beck JL, Porter KA, Shaikhutdinov R (2006) Bayesian state estimation method for nonlinear systems and its application to recorded seismic response. J Eng Mech 132(4):396

    Google Scholar 

  193. Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier

    MATH  Google Scholar 

  194. Lee D, Ahn TS, Kim HS (2018) A metric on the similarity between two frequency response functions. J Sound Vib 436:32. https://doi.org/10.1016/j.jsv.2018.08.051

    Article  Google Scholar 

  195. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289

    MathSciNet  MATH  Google Scholar 

  196. Candès EJ (2008) The restricted isometry property and its implications for compressed sensing. CR Math 346(9):589. https://doi.org/10.1016/j.crma.2008.03.014

    Article  MathSciNet  MATH  Google Scholar 

  197. Haykin S (2010) Neural networks and learning machines. Pearson Education India

    Google Scholar 

  198. Wang J, Wang C, Lai X (2015) MIMO SVM based uncorrelated multi-source dynamic random load identification algorithm in frequency domain. J Comput Inform Syst 11(22):8165

    Google Scholar 

  199. Kozukue W, Hagiwara I, Miyaji H (2007) Input load identification using a holographic neural network. Int J Veh Des 43(1–4):173

    Google Scholar 

  200. Liu R, Hou Z, Wang S, Sheng D (2020) Dynamic bolt load identification for battery pack based on machine learning, Dynamic bolt load identification for battery pack based on machine learning. Tech. rep., SAE Technical Paper 2020-01-0865

  201. Platt JC (1998) Sequential minimal optimization: A fast algorithm for training support vector machines

  202. Alpaydin E (2020) Introduction to machine learning MIT press.

  203. Bishop CM (2006) Pattern recognition and machine learning (information science and statistics). Springer-Verlag, New York Inc

    MATH  Google Scholar 

  204. Roseiro L, Alcobia C, Ferreira P, Baïri A, Laraqi N, Alilat N (2013) Identification of the forces in the suspension system of a race car using artificial neural networks, In: Computational Intelligence and Decision Making (Springer), pp. 469–477

  205. Yann L, Yoshua B, Geoffrey H (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  206. Sekuła K, Cezary G, Jan HS (2013) On-line impact load identification. Shock and Vibration 20:123

    Google Scholar 

  207. Zhang C, Xu Y (2016) Optimal multi-type sensor placement for response and excitation reconstruction. J Sound Vib 360:112

    Google Scholar 

  208. Gupta DK, Dhingra AK (2013) Input load identification from optimally placed strain gages using D-optimal design and model reduction. Mech Syst Signal Process 40(2):556

    Google Scholar 

  209. Wang J, Law SS, Yang QS (2013) Sensor placement methods for an improved force identification in state space. Mech Syst Signal Process 41(s 1–2):254–267

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of National Natural Science foundation of China (Grant No. 51975312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichao Hou.

Ethics declarations

Conflict of interest

The autors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Dobriban, E., Hou, Z. et al. Dynamic Load Identification for Mechanical Systems: A Review. Arch Computat Methods Eng 29, 831–863 (2022). https://doi.org/10.1007/s11831-021-09594-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09594-7

Navigation