Skip to main content
Log in

State-of-the-Art Reviews of Meta-Heuristic Algorithms with Their Novel Proposal for Unconstrained Optimization and Applications

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

A widespread survey of numerous traditional meta-heuristic algorithms has been investigated category wise in this paper. Where, particle swarm optimization (PSO) and differential evolution (DE) is found to be an efficient and powerful optimization algorithm. Therefore, an extensive survey of recent-past PSO and DE variants with their hybrids has been inspected again. After this a novel PSO (called, nPSO) and DE (namely, nDE) with their innovative hybrid (termed as, ihPSODE) is proposed in this paper for unconstrained optimization problems. In nPSO introducing a new linearly decreased inertia weight and gradually decreased and/or increased acceleration coefficient as well a different position update equation (by introducing a non-linear decreasing factor. And in nDE a new mutation strategy and crossover rate are introduced. In view of that, convergence characteristic of nPSO and nDE provides different approximation to the solution space. Further, instead of naïve way proposed hybrid ihPSODE integrating merits of nPSO and nDE. In ihPSODE after initialization and calculation identify best half member and discard rest of members from the population. In current population apply nPSO to maintain exploration and exploitation. Then to enhance local search ability and improve convergence accuracy applies nDE. Hence, proposed ihPSODE has higher probability of avoiding local optima and it is likely to find global optima more quickly due to relating superior capability of the anticipated nPSO and nDE. Performance of the proposed hybrid ihPSODE as well as its anticipated integrating component nPSO and nDE are verified on 23 basic, 30 CEC 2014 and 30 CEC 2017 unconstrained benchmark functions plus 3 real world problems. The several numerical, statistical and graphical as well as comparative analyses over many state-of-the-art algorithms confirm superiority of the proposed algorithms. Finally, based on overall performance ihPSODE is recommended for unconstrained optimization problems in this present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Simpson AR, Dandy GC, Murphy LJ (1994) Genetic algorithms compared to other techniques for pipe optimization. J Water Resourc Plan Manag 20:423–443

    Article  Google Scholar 

  2. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Publishing Company, Boston

    MATH  Google Scholar 

  3. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceeding of IEEE international conference on neural networks, pp 1942–1948

  4. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  5. Murase H, Wadano A (1998) Photosynthetic algorithm for machine learning and TSP. IFAC Proc 31:19–24

    Article  Google Scholar 

  6. de Castro LN, von Zuben FJ (2000) The clonal selection algorithm with engineering applications. In: Proceedings of the genetic and evolutionary computation conference, Las Vegas, Nevada, USA, pp 36–39

  7. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  8. Eusuff M, Lansey KE (2003) Optimization of water distribution network design using the shuffled frog leaping algorithm. J Water Resour Plan Manag 129(3):210–225

    Article  Google Scholar 

  9. Wedde HF, Farooq M, Zhang Y (2004) BeeHive: an efficient fault-tolerant routing algorithm inspired by honey bee behavior. Springer, Berlin, pp 83–94

    Google Scholar 

  10. Pinto P, Runkler TA, Sousa JM (2005) Wasp swarm optimization of logistic systems. Adapt Nat Comput Algorithms 264–267

  11. Du H, Wu Z, Zhuang J (2006) Small-world optimization algorithm for function optimization. Adv Nat Comput 264–273

  12. Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Ecol Inform 1(4):355–366

    Article  Google Scholar 

  13. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony algorithm. J Global Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  14. Havens TC, Spain CJ, Salmon NG, Keller JM (2008) Roach infestation optimization. In: Proceedings of the IEEE swarm intelligence symposium, pp 1–7

  15. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  16. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Proceedings of world congress on nature and biologically inspired computing, Coimbatore, India, pp 210–214

  17. Yang X (2009) Firefly algorithms for multimodal optimization, stochastic algorithms: foundations and applications. Springer, Berlin 5792:169–178

    MATH  Google Scholar 

  18. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) A gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  19. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Proceedings of the fourth international workshop on nature inspired cooperative strategies for optimization (NICSO 2010), Berlin, Heidelberg, pp 65–74

  20. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315

    Article  Google Scholar 

  21. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166

    Article  Google Scholar 

  22. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    Article  MathSciNet  MATH  Google Scholar 

  23. Cuevas E, Cienfuegos M, Zaldívar D, Pérez-Cisneros M (2013) A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst Appl 40(16):6374–6384

    Article  Google Scholar 

  24. Bansal JC, Sharma H, Jadon SS, Clerc M (2014) Spider monkey optimization algorithm for numerical optimization. Memetic Comput 6(1):31–47

    Article  Google Scholar 

  25. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  26. Zheng YJ (2015) Water wave optimization: a new nature-inspired metaheuristic. Comput Oper Res 55:1–11

    Article  MathSciNet  MATH  Google Scholar 

  27. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

    Article  Google Scholar 

  28. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  29. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete and multi-objective problems. Neural Comput Appl 27(4):1053–1073

    Article  MathSciNet  Google Scholar 

  30. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Article  Google Scholar 

  31. Pierezan J, Dos Santos Coelho L (2018) Coyote optimization algorithm: a new metaheuristic for global optimization problems. IEEE Congress Evolut Comput, pp 1–8

  32. Shabani A, Asgarian B, Gharebaghi SA, Salido MA, Giret A (2019) A new optimization algorithm based on search and rescue operations. Math Prob Eng 2019:1–23

    Article  Google Scholar 

  33. Marzbali AG (2020) A novel nature-inspired meta-heuristic algorithm for optimization: bear smell search algorithm. Soft Comput 1–33

  34. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  35. He Q, Han C (2006) An improved particle swarm optimization algorithm with disturbance term. Comput Intell Bioinform 4115:100–108

    Google Scholar 

  36. Yang X, Yuan J, Mao H (2007) A modified particle swarm optimizer with dynamic adaptation. Appl Math Comput 189:1205–1213

    MathSciNet  MATH  Google Scholar 

  37. Jie J, Zeng J, Han C, Wang Q (2008) Knowledge-based cooperative particle swarm optimization. Appl Math Comput 205(2):861–873

    MathSciNet  MATH  Google Scholar 

  38. Cai XJ, Cui Y, Tan Y (2009) Predicted modified PSO with time varying accelerator coefficients. Int J Bio-inspired Comput 1(1/2):50–60

    Article  Google Scholar 

  39. Azadani EN, Hosseinian S, Moradzadeh B (2010) Generation and reserve dispatch in a competitive market using constrained particle swarm optimization. Int J Electr Power Energy Syst 32(1):79–86

    Article  Google Scholar 

  40. Kang Q, He H (2011) A novel discrete particle swarm optimization algorithm for meta-task assignment in heterogeneous computing systems. Microprocess Microsyst 35(1):10–17

    Article  Google Scholar 

  41. Sun J, Fang W, Wu X, Palade V, Xu W (2012) Quantum behaved particle swarm optimization: analysis of individual particle behavior and parameter selection. Evolut Comput 20(3):349–393

    Article  Google Scholar 

  42. Tatsumi K, Ibuki T, Tanino T (2013) A chaotic particle swarm optimization exploiting a virtual quartic objective function based on the personal and global best solutions. Appl Math Comput 219(17):8991–9011

    MathSciNet  MATH  Google Scholar 

  43. Zhang W, Ma D, Wei J-J, Liang H-F (2014) A parameter selection strategy for particle swarm optimization based on particle positions. Expert Syst Appl 41(7):3576–3584

    Article  Google Scholar 

  44. Jordehi AR (2015) Enhanced leader PSO: a new PSO variant for solving global optimisation problems. Appl Soft Comput 26:401–417

    Article  Google Scholar 

  45. Tanweer MR, Suresh S, Sundararajan N (2016) Dynamicmentoring and self-regulation based particle swarm optimization algorithm for solving complex real-world optimization problems. Inf Sci 326:1–24

    Article  Google Scholar 

  46. Ngoa TT, Sadollahb A, Kima JH (2016) A cooperative particle swarm optimizer with stochastic movements for computationally expensive numerical optimization problems. J Comput Sci 13:68–82

    Article  MathSciNet  Google Scholar 

  47. Liu P, Liu J (2017) Multi-leader PSO: a new PSO variant for solving global optimization problems. Appl Soft Comput 61:256–263

    Article  Google Scholar 

  48. Kiran MS (2017) Particle swarm optimization with a new update mechanism. Appl Soft Comput 60:670–678

    Article  Google Scholar 

  49. Mishra KK, Bisht H, Singh T, Chang V (2018) A direction aware particle swarm optimization with sensitive swarm leader. Big Data Res 14:57–67

    Article  Google Scholar 

  50. Chen Y, Li L, Peng H, Xiao J, Wu Q (2018) Dynamic multi-swarm differential learning particle swarm optimizer. Swarm Evolut Comput 39:209–221

    Article  Google Scholar 

  51. Espitia HE, Sofrony JI (2018) Statistical analysis for vortex particle swarm optimization. Appl Soft Comput 67:370–386

    Article  Google Scholar 

  52. Yu H, Tan Y, Zeng J, Sun C, Jin Y (2018) Surrogate-assisted hierarchical particle swarm optimization. Inf Sci 454–455:59–72

    Article  MathSciNet  Google Scholar 

  53. Chen Y, Li L, Xiao J, Yang Y, Liang J, Li T (2018) Particle swarm optimizer with crossover operation. Eng Appl Artif Intell 70:59–169

    Article  Google Scholar 

  54. Isiet M, Gadala M (2019) Self-adapting control parameters in particle swarm optimization. Appl Soft Comput 83:1–24

    Article  Google Scholar 

  55. Hosseini SA, Hajipour A, Tavakoli H (2019) Design and optimization of a CMOS power amplifier using innovative fractional-order particle swarm optimization. Appl Soft Comput 85:1–10

    Article  Google Scholar 

  56. Kohler M, Vellasco MMBR, Tanscheit R (2019) PSO+: a new particle swarm optimization algorithm for constrained problems. Appl Soft Comput 85:1–26

    Article  Google Scholar 

  57. Khajeh A, Ghasemi MR, Arab HG (2019) Modified particle swarm optimization with novel population initialization. J Inform Optim Sci 40(6):1167–1179

    MathSciNet  Google Scholar 

  58. Ang KM, Lim WH, Isa NAM, Tiang SS, Wong CH (2020) A constrained multi-swarm particle swarm optimization without velocity for constrained optimization problems. Expert Syst Appl 140:1–23

    Article  Google Scholar 

  59. Lanlan K, Ruey SC, Wenliang C, Yeh C (2020) Non-inertial opposition-based particle swarm optimization and its theoretical analysis for deep learning applications. Appl Soft Comput 88:1–10

    Google Scholar 

  60. Xiong H, Qiu B, Liu J (2020) An improved multi-swarm particle swarm optimizer for optimizing the electric field distribution of multichannel transcranial magnetic stimulation. Artif Intell Med 104:1–14

    Article  Google Scholar 

  61. Wang Y-J, Zhang J-S (2007) Global optimization by an improved differential evolutionary algorithm. Appl Math Comput 188(1):669–680

    MathSciNet  MATH  Google Scholar 

  62. Ali M (2007) Differential Evolution with preferential crossover. Eur J Oper Res 181(3):1137–1147

    Article  MathSciNet  MATH  Google Scholar 

  63. Rahnamayan S, Tizhoosh H, Salama M (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12(1):64–79

    Article  Google Scholar 

  64. Zhang J, Sanderson C (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958

    Article  Google Scholar 

  65. Amjady N, Sharifzadeh H (2010) Solution of non-convex economic dispatch problem considering valve loading effect by a new modified differential evolution algorithm. Int J Electr Power Energy Syst 32(8):893–903

    Article  Google Scholar 

  66. Fu H, Ouyang D, Xu J (2011) A self-adaptive differential evolution algorithm for binary CSPs. Comput Math Appl 62(7):2712–2718

    Article  MathSciNet  MATH  Google Scholar 

  67. Ghosh A, Das S, Chowdhury A, Giri R (2011) An improved differential evolution algorithm with fitness-based adaptation of the control parameters. Inf Sci 181:3749–3765

    Article  MathSciNet  Google Scholar 

  68. Islam SM, Das S, Ghosh S, Roy S, Suganthan PN (2012) An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans Syst Man Cybern Syst 42(2):482–500

    Article  Google Scholar 

  69. Cai Y, Wang J (2013) Differential evolution with neighborhood and direction information for numerical optimization. IEEE Trans Cybern 43(6):2202–2215

    Article  MathSciNet  Google Scholar 

  70. Gong W, Cai Z (2013) Differential evolution with ranking-based mutation operators. IEEE Trans Cybern 43(6):2066–2081

    Article  Google Scholar 

  71. Li X, Yin M (2014) Modified differential evolution with self-adaptive parameters method. J Comb Optim 31(2):546–576

    Article  MathSciNet  MATH  Google Scholar 

  72. Guo SM, Yang CC (2015) Enhancing differential evolution utilizing eigenvector-based crossover operator. IEEE Trans Evol Comput 19(1):31–49

    Article  MathSciNet  Google Scholar 

  73. Mohamed AW (2015) An improved differential evolution algorithm with triangular mutation for global numerical optimization. Comput Ind Eng 85:359–375

    Article  Google Scholar 

  74. Yang M, Li C, Cai Z, Guan J (2015) Differential evolution with auto-enhanced population diversity. IEEE Trans Cybern 45(2):302–315

    Article  Google Scholar 

  75. Mallipeddi R, Lee M (2015) An evolving surrogate model-based differential evolution algorithm. Appl Soft Comput 34:770–787

    Article  Google Scholar 

  76. Do DTT, Lee S, Lee J (2016) A modified differential evolution algorithm for tensegrity structures. Compos Struct 158:11–19

    Article  Google Scholar 

  77. Liu G, Guo Z (2016) A clustering-based differential evolution with random-based sampling and Gaussian sampling. Neurocomputing 205:229–246

    Article  Google Scholar 

  78. Salehpour M, Jamali A, Bagheri A, Nariman-zadeh N (2017) A new adaptive differential evolution optimization algorithm based on fuzzy inference system. Eng Sci Technol 20(2):587–597

    Google Scholar 

  79. Qiu X, Tan KC, Xu J-X (2017) Multiple exponential recombination for differential evolution. IEEE Trans Cybern 47(4):995–1006

    Article  Google Scholar 

  80. Qiu X, Xu J-X, Xu Y, Tan KC (2018) A New differential evolution algorithm for minimax optimization in robust design. IEEE Trans Cybern 48(5):1355–1368

    Article  Google Scholar 

  81. Zhang H, Li X (2018) Enhanced differential evolution with modified parent selection technique for numerical optimization. Int J Comput Sci Eng 17(1):98

    Google Scholar 

  82. Huang H, Jiang L, Yu X, Xie D (2018) Hypercube-based crowding differential evolution with neighborhood mutation for multimodal optimization. Int J Swarm Intell Res 9(2):15–27

    Article  Google Scholar 

  83. Yang X, Li J, Peng X (2019) An improved differential evolution algorithm for learning high-fidelity quantum controls. Sci Bull 64(19):1402–1408

    Article  Google Scholar 

  84. Prabha S, Yadav R (2019) Differential evolution with biological-based mutation operator. Eng Sci Technol Int J 23:1–11

    Google Scholar 

  85. Liu Z-G, Ji X-H, Yang Y (2019) Hierarchical differential evolution algorithm combined with multi-cross operation. Expert Syst Appl 130:276–292

    Article  Google Scholar 

  86. Gui L, Xia X, Yu F, Wu H, Wu R, Wei B, He G (2019) A multi-role based differential evolution. Swarm Evolut Comput 50:1–15

    Article  Google Scholar 

  87. Li S, Gu Q, Gong W, Ning B (2020) An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models. Energy Convers Manag 205:1–16

    Article  Google Scholar 

  88. Hu L, Hua W, Lei W, Xiantian Z (2020) A modified Boltzmann annealing differential evolution algorithm for inversion of directional resistivity logging-while-drilling measurements. J Petrol Sci Eng 180:1–10

    Google Scholar 

  89. Ben GN (2020) An accelerated differential evolution algorithm with new operators for multi-damage detection in plate-like structures. Appl Math Model 80:366–383

    Article  MATH  Google Scholar 

  90. Hendtlass T (2001) A combined swarm differential evolution algorithm for optimization problems. In: Proceedings of 14th international conference on industrial and engineering applications of artificial intelligence and expert systems. Lecture notes in computer science, vol 2070, pp 11–18

  91. Zhang WJ, Xie XF (2003) DEPSO: hybrid particle swarm with differential evolution operator. In: Proceedings of the IEEE international conference on systems, man and cybernetics, Washington DC, USA, pp 3816–3821

  92. Talbi H, Batouche M (2004) Hybrid particle swarm with differential evolution for multimodal image registration. Proc IEEE Int Conf Ind Technol 3:1567–1573

    Google Scholar 

  93. Hao ZF, Gua GH, Huang H (2007) A particle swarm optimization algorithm with differential evolution. In: Proceedings of sixth international conference on machine learning and cybernetics, pp 1031–1035

  94. Niu B, Li L (2008) A novel PSO-DE-based hybrid algorithm for global optimization. Lect Notes Comput Sci 5227:156–163

    Article  Google Scholar 

  95. Wang Y, Cai Z (2009) A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems. Front Comput Sci 3:38–52

    Article  Google Scholar 

  96. Caponio A, Neri F, Tirronen V (2009) Superfit control adaption in memetic differential evolution frameworks. Soft Comput 13(8–9):811–831

    Article  Google Scholar 

  97. Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput 10(2):629–640

    Article  Google Scholar 

  98. Xin B, Chen J, Peng Z, Pan F (2010) An adaptive hybrid optimizer based on particle swarm and differential evolution for global optimization. Sci China Inform Sci 53(5):980–989

    Article  MathSciNet  Google Scholar 

  99. Pant M, Thangaraj R, Abraham A (2011) de-pso: a new hybrid meta-heuristic for solving global optimization problems. New Math Nat Comput 7(3):363–381

    Article  MathSciNet  Google Scholar 

  100. Epitropakis MG, Plagianakos VP, Vrahatis MN (2012) Evolving cognitive and social experience in particle swarm optimization through differential evolution: a hybrid approach. Inf Sci 216:50–92

    Article  Google Scholar 

  101. Nwankwor E, Nagar AK, Reid DC (2012) Hybrid differential evolution and particle swarm optimization for optimal well placement. Comput Geosci 17(2):249–268

    Article  MATH  Google Scholar 

  102. Sahu BK, Pati S, Panda S (2014) Hybrid differential evolution particle swarm optimisation optimised fuzzy proportional–integral derivative controller for automatic generation control of interconnected power system. IET Gener Transm Distrib 8(11):1789–1800

    Article  Google Scholar 

  103. Yu X, Cao J, Shan H, Zhu L, Guo J (2014) An adaptive hybrid algorithm based on particle swarm optimization and differential evolution for global optimization. Sci World J 1–16

  104. Seyedmahmoudian M, Rahmani R, Mekhilef S, Thano AM, Stojcevski A, Soon TK, Ghandhari AS (2015) Simulation and hardware implementation of new maximum power point tracking technique for partially shaded PV system using hybrid DEPSO method. Trans Sustain Energy 6(3):850–862

    Article  Google Scholar 

  105. Parouha RP, Das KN (2015) An efficient hybrid technique for numerical optimization and applications. Comput Ind Eng 83:193–216

    Article  Google Scholar 

  106. Tang B, Zhu Z, Luo J (2016) Hybridizing particle swarm optimization and differential evolution for the mobile robot global path planning. Int J Adv Rob Syst 13(3):1–17

    Google Scholar 

  107. Parouha RP, Das KN (2016) A robust memory based hybrid differential evolution for continuous optimization problem. Knowl-Based Syst 103:118–131

    Article  Google Scholar 

  108. Parouha RP, Das KN (2016) DPD: an intelligent parallel hybrid algorithm for economic load dispatch problems with various practical constraints. Expert Syst Appl 63:295–309

    Article  Google Scholar 

  109. Famelis IT, Alexandridis A, Tsitouras C (2017) A highly accurate differential evolution–particle swarm optimization algorithm for the construction of initial value problem solvers. Eng Optim 50(8):1364–1379

    Article  MathSciNet  Google Scholar 

  110. Mao B, Xie Z, Wang Y, Handroos H, Wu H (2018) A hybrid strategy of differential evolution and modified particle swarm optimization for numerical solution of a parallel manipulator. Math Prob Eng 6:1–9

    Google Scholar 

  111. Tang B, Xiang K, Pang M (2018) An integrated particle swarm optimization approach hybridizing a new self-adaptive particle swarm optimization with a modified differential evolution. Neural Comput Appl 2:1–35

    Google Scholar 

  112. Too J, Abdullah AR, Saad NM (2019) Hybrid binary particle swarm optimization differential evolution-based feature selection for EMG signals classification. Axioms 8(3):1–17

    Article  Google Scholar 

  113. Dash J, Dam B, Swain R (2019) Design and implementation of sharp edge FIR filters using hybrid differential evolution particle swarm optimization. AEU Int J Electron Commun 114:1–61

    Google Scholar 

  114. Zhao X, Zhang Z, Xie Y, Meng J (2020) Economic-environmental dispatch of microgrid based on improved quantum particle swarm optimization. Energy 195:1–39

    Google Scholar 

  115. Liang J, Qu B, Suganthan P (2013) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore

  116. Awad N, Ali M, Liang J, Qu B, Suganthan P (2016) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization, Technical Report

  117. El Dor A, Clerc M, Siarry P (2012) Hybridization of differential evolution and particle swarm optimization in a new algorithm DEPSO-2S. Swarm Evolut Comput 7269:57–65

    Article  Google Scholar 

  118. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  119. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2019) Equilibrium optimizer: a novel optimization algorithm. Knowl-Based Syst 191:1–34

    Google Scholar 

  120. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gen Comput Syst 97:849–872

    Article  Google Scholar 

  121. Patel VK, Savsani VJ (2015) Heat transfers search a novel optimization algorithm. Inf Sci 324:217–246

    Article  Google Scholar 

  122. Uguz HHH (2014) A novel particle swarm optimization algorithm with levy flight. Appl Soft Comput 23:333–345

    Article  Google Scholar 

  123. Mirjalili SA, Lewis A, Sadiq AS (2014) Autonomous particles groups for particle swarm optimization. Arab J Sci Eng 39:4683–4697

    Article  MATH  Google Scholar 

  124. Mahmoodabadi MJ, Mottaghi ZS, Bagheri A (2014) High exploration particle swarm optimization. J Inform Sci 273:101–111

    Article  MathSciNet  Google Scholar 

  125. Yan B, Zhao Z, Zhou Y, Yuan W, Li J, Wu J, Cheng D (2017) A particle swarm optimization algorithm with random learning mechanism and levy flight for optimization of atomic clusters. Comput Phys Commun 219:79–86

    Article  Google Scholar 

  126. Brest J, Reiner S, Boskovic B, Mernik M, Zumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evolut Comput 10:646–657

    Article  Google Scholar 

  127. Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. IEEE Congress Evolut Comput 1782:1785–1791

    Google Scholar 

  128. Tanabe R, Fukunaga A (2013) Success-history based parameter adaptation for differential evolution. IEEE Congress Evolut Comput 71–78

  129. Pant M, Thangaraj R, Abraham A (2011) a new hybrid meta-heuristic for solving global optimization problems. New Math Nat Comput 7(3):363–381

    Article  MathSciNet  Google Scholar 

  130. Jana ND, Sil J (2016) Interleaving of particle swarm optimization and differential evolution algorithm for global optimization. Int J Comput Appl 38(2–3):116–133

    Google Scholar 

  131. Xia X, Gui L, He G, Xie C, Wei B, Xing Y, Tang Y (2018) A hybrid optimizer based on firefly algorithm and particle swarm optimization algorithm. J Comput Sci 26:488–500

    Article  Google Scholar 

  132. Chegini SN, Bagheri A, Najafi F (2018) A new hybrid PSO based on sine cosine algorithm and Levy flight for solving optimization problems. Appl Soft Comput 73:697–726

    Article  Google Scholar 

  133. Das KN, Parouha RP (2015) An ideal tri-population approach for unconstrained optimization and applications. Appl Math Comput 256:666–701

    MathSciNet  MATH  Google Scholar 

  134. Chen D, Zou F, Lu R, Wang P (2017) Learning backtracking search optimization algorithm and its application. Inf Sci 376:71–94

    Article  Google Scholar 

  135. Nasir M, Das S, Maity D, Sengupta S, Halder U, Suganthan PN (2012) A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. Inf Sci 209:16–36

    Article  MathSciNet  Google Scholar 

  136. Lynn N, Suganthan PN (2017) Ensemble particle swarm optimizer. Appl Soft Comput 55:533–548

    Article  Google Scholar 

  137. Tian MN, Gao XB (2019) Differential evolution with neighborhood-based adaptive evolution mechanism for numerical optimization. Inf Sci 478:422–448

    Article  Google Scholar 

  138. Zheng LM, Zhang SX, Tang KS, Zheng SY (2017) Differential evolution powered by collective information. Inf Sci 399:13–29

    Article  Google Scholar 

  139. Nenavath H, Jatoth RK, Das S (2018) A synergy of the sine-cosine algorithm and particle swarm optimizer for improved global optimization and object tracking. Swarm Evolut Comput 43:1–30

    Article  Google Scholar 

  140. Chen X, Tianfield H, Mei C, Du W, Liu G (2017) Biogeography-based learning particle swarm optimization. Soft Comput 21:7519–7541

    Article  Google Scholar 

  141. Zhu A, Xu C, Li Z, Wu J, Liu Z (2015) Hybridizing grey Wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC. J Syst Eng Electron 26:317–328

    Article  Google Scholar 

  142. Du SY, Liu ZG (2019) Hybridizing particle swarm optimization with JADE for continuous optimization. Multimed Tools Appl 1–18

  143. Zar JH (1999) Biostatistical analysis. Prentice Hall, Englewood Cliffs

    Google Scholar 

  144. Li C, Yang S, Nguyen TT (2012) A self-learning particle swarm optimizer for global optimization problems. IEEE Trans Syst Man Cybern 42(3):627–646

    Article  Google Scholar 

  145. Lynn N, Suganthan P (2015) Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm Evolut Comput 24:11–24

    Article  Google Scholar 

  146. Xuewen X, Ling G, Hui ZZ (2018) A multi-swarm particle swarm optimization algorithm based on dynamical topology and purposeful. Appl Soft Comput 67:126–140

    Article  Google Scholar 

  147. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417

    Article  Google Scholar 

  148. Wang Y, Cai ZZ, Zhang QF (2011) Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans Evol Comput 15(1):55–66

    Article  Google Scholar 

Download references

Acknowledgements

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghav Prasad Parouha.

Ethics declarations

Conflict of interest

The authors declared that they had no conflicts of interest with respect to their authorship or the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parouha, R.P., Verma, P. State-of-the-Art Reviews of Meta-Heuristic Algorithms with Their Novel Proposal for Unconstrained Optimization and Applications. Arch Computat Methods Eng 28, 4049–4115 (2021). https://doi.org/10.1007/s11831-021-09532-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09532-7

Navigation