Skip to main content
Log in

Computational Methods for Exudates Detection and Macular Edema Estimation in Retinal Images: A Survey

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Automated retinal image analysis has been widey adopted for diagnosing ophthalmic and systemic diseases which includes macular edema, diabetic and hypertensive retinopathy. Automatic assessment of retinal images can assist clinicians in screening patients with early diagnosis and in turn provide timely treatment to prevent vision loss. The appearance of exudates in retinal images is one of the early symptom of macular edema and diabetic retinopathy. This paper presents a review of image analysis/computer vision techniques utilized for exudate detection and segmentation in retinal images. The objectives of this paper are to categorize different techniques for exudate detection and provide a critical analysis on the effectiveness of each technique. Besides comparative analysis a detailed overview of quantifiable performance measures of reviewed techniques is also presented. A anatomical structures and disease manifestation in retinal images are also provided for new researchers. We have also presented a summary of publicly available datasets for exudata detection. Moreover, the current trends, open problems and future research direction in automated screening of macular edema has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bowling B (2015) Kanski’s clinical ophthalmology e-book: a systematic approach. Elsevier Health Sciences, Amsterdam

    Google Scholar 

  2. Fraz MM, Barman SA (2014) Computer vision algorithms applied to retinal vessel segmentation and quantification of vessel caliber. Image Anal Model Ophthalmol 49:1–26

    Google Scholar 

  3. Wilkinson CP (2003) Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110(9):1677–1682

    Google Scholar 

  4. Whiting DR et al (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabet Res Clin Pract 94(3):311–321

    Google Scholar 

  5. Owen CG (2018) Retinal vasculometry associations with cardiometabolic risk factors in the European Prospective Investigation of Cancer Norfolk study. Ophthalmology 1:7

    Google Scholar 

  6. Fraz MM (2012) An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans Biomed Eng 59(9):2538–2548

    Google Scholar 

  7. Staal J (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509

    Google Scholar 

  8. Welikala RA, et al (2017) Automated quantification of retinal vessel morphometry in the UK biobank cohort. In: 2017 seventh international conference on image processing theory, tools and applications (IPTA), IEEE, pp 1–6

  9. Fraz MM, Barman SA (2014) Ensemble classification applied to retinal blood vessel segmentation: theory and implementation. Image analysis and modeling in ophthalmology. CRC Press, London, pp 23–48

    Google Scholar 

  10. ETDRSR Group (1991) Early Treatment Diabetic Retinopathy Study design and baseline patient characteristics: ETDRS report number 7. Ophthalmology 98(5):741–756

    Google Scholar 

  11. Patton N (2006) Retinal image analysis: concepts, applications and potential. Prog Retinal Eye Res 25(1):99–127

    Google Scholar 

  12. Abràmoff MD, Garvin MK, Sonka M (2010) Retinal imaging and image analysis. IEEE Rev Biomed Eng 3:169–208

    Google Scholar 

  13. Fraz MM (2012) Blood vessel segmentation methodologies in retinal images—a survey. Comput Methods Progr Biomed 108(1):407–433

    Google Scholar 

  14. Faust O (2012) Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review. J Med Syst 36(1):145–157

    Google Scholar 

  15. Winder RJ (2009) Algorithms for digital image processing in diabetic retinopathy. Comput Med Imaging Graph 33(8):608–622

    Google Scholar 

  16. Kanagasingam Y (2014) Progress on retinal image analysis for age related macular degeneration. Prog Retinal Eye Res 38:20–42

    Google Scholar 

  17. Zaki WMDW (2016) Diabetic retinopathy assessment: towards an automated system. Biomed Signal Process Control 24:72–82

    Google Scholar 

  18. Welikala RA (2016) Automated retinal image quality assessment on the UK Biobank dataset for epidemiological studies. Comput Biol Med 71:67–76

    Google Scholar 

  19. Bernardes R, Serranho P, Lobo C (2011) Digital ocular fundus imaging: a review. Ophthalmologica 226(4):161–181

    Google Scholar 

  20. Stevens RA, Saine PJ, Tyler ME (1999) Stereo atlas of fluorescein and indocyanine green angiography. Butterworth-Heinemann, Boston

    Google Scholar 

  21. Mordant DJ et al (2011) Spectral imaging of the retina. Camb Ophthalmol Sympo. https://doi.org/10.1038/eye.2010.222

    Article  Google Scholar 

  22. Alabboud I et al (2007) New spectral imaging techniques for blood oximetry in the retina. In: European conference on biomedical optics. Optical Society of America, pp 6631\(\_\)22

  23. Dithmar S, Holz FG (2008) Fluorescence angiography in ophthalmology. Springer, New York

    Google Scholar 

  24. Klais CM, Ober MD, Yannuzzi LA (2009) Indocyanine green angiography: general aspects and interpretation. In: Retinal angiography and optical coherence tomography. Springer, pp 43–59

  25. Hurley BR, Regillo CD (2009) Fluorescein angiography: general principles and interpretation. In: Retinal angiography and optical coherence tomography. Springer, pp 27–42

  26. Amel F, Mohammed M, Abdelhafid B (2012) Improvement of the hard exudates detection method used for computer-aided diagnosis of diabetic retinopathy. Int J Image Graph Signal Process 4(4):1

    Google Scholar 

  27. Deepak KS, Sivaswamy J (2012) Automatic assessment of macular edema from color retinal images. IEEE Trans Med Imaging 31(3):766–776

    Google Scholar 

  28. Kowluru RA, Chan PS (2008) Capillary dropout in diabetic retinopathy. In: Diabetic retinopathy. Springer, pp 265–282

  29. Do DV (2009) An exploratory study of the safety, tolerability and bioactivity of a single intravitreal injection of vascular endothelial growth factor Trap-Eye in patients with diabetic macular oedema. Br J Ophthalmol 93(2):144–149

    Google Scholar 

  30. Jelinek H, Cree MJ (2009) Automated image detection of retinal pathology. CRC Press, London

    Google Scholar 

  31. Gibson DM (2012) Diabetic retinopathy and age-related macular degeneration in the US. Am J Prevent Med 43(1):48–54

    Google Scholar 

  32. Rousso L, Sowka J (2017) Recognizing abnormal vasculature. Rev Optom 14(1):82—86. https://www.reviewofoptometry.com/article/recognizing-abnormal-vasculature

  33. Chiang A et al (2011) Fundus imaging of age-related macular degeneration. In: Age-related macular degeneration diagnosis and treatment. Springer, pp. 39–64

  34. Strouthidis NG, Garway-Heath DF (2009) Detecting glaucoma progression by imaging. In: Glaucoma. Springer, pp 29–40

  35. Wong TY (2002) Retinal arteriolar narrowing and risk of coronary heart disease in men and women: the Atherosclerosis Risk in Communities Study. Jama 287(9):1153–1159

    Google Scholar 

  36. Kauppi T et al (2007) DIARETDB0: evaluation database and methodology for diabetic retinopathy algorithms. Machine Vision and Pattern Recognition Research Group, Laboratory of Information Processing, Lappeenranta University of Technology. http://www.it.lut.fi/project/imageret/diaretdb0/index.html. Accessed 17 Sept 2018

  37. Kauppi T et al (2007) The DIARETDB1 diabetic retinopathy database and evaluation protocol Tech. Machine Vision and Pattern Recognition Research Group, Laboratory of Information Processing, Lappeenranta University of Technology. http://www.it.lut.fi/project/imageret/diaretdb1. Accessed 17 Sept 2018

  38. Prentasic P et al (2013) Diabetic retinopathy image database (DRiDB): a new database for diabetic retinopathy screening programs research. In: 2013 8th international symposium on image and signal processing and analysis (ISPA). IEEE, pp 711–716

  39. Pires R (2014) Advancing bag-of-visual-words representations for lesion classification in retinal images. PLoS ONE 9(6):e96814

    MathSciNet  Google Scholar 

  40. Carmona EJ (2008) Identification of the optic nerve head with genetic algorithms. Artif Intell Med 43(3):243–259

    Google Scholar 

  41. Decencière E (2013) Teleophta: machine learning and image processing methods for teleophthalmology. Irbm 34(2):196–203

    Google Scholar 

  42. Giancardo L (2012) Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med Image Anal 16(1):216–226

    Google Scholar 

  43. Decencière E (2014) Feedback on a publicly distributed image database: the Messidor database. Image Anal Stereol 33(3):231–234

    MATH  Google Scholar 

  44. Lowell J (2004) Optic nerve head segmentation. IEEE Trans Med Imaging 23(2):256–264

    Google Scholar 

  45. Hoover A, Kouznetsova V, Goldbaum M (2000) Structured analysis of the retina. Michael Goldbaum, The University of California, San Diego. http://cecas.clemson.edu/~ahoover/stare/. Accessed 17 Sept 2018

  46. Akita K, Kuga H (1982) A computer method of understanding ocular fundus images. Pattern Recogn 15(6):431–443

    Google Scholar 

  47. Duda RO, Hart PE, Stork DG (2012) Pattern classification. Wiley, New York

    MATH  Google Scholar 

  48. Schaefer G, Leung E (2007) Neural networks for exudate detection in retinal images. In: International symposium on visual computing. Springer, pp 298–306

  49. Osareh A, Shadgar B, Markham R (2009) A computational-intelligence-based approach for detection of exudates in diabetic retinopathy images. IEEE Trans Inf Technol Biomed 13(4):535–545

    Google Scholar 

  50. Garcia M et al (2009) Detection of hard exudates in retinal images using a radial basis function classifier. Ann Biomed Eng 37(7):1448–1463

    Google Scholar 

  51. García M et al (2009) Neural network based detection of hard exudates in retinal images. Comput Methods Prog Biomed 93(1):9–19

    Google Scholar 

  52. Kauppi T et al (2011) Detection and decision-support diagnosis of diabetic retinopathy using machine vision. Pattern Recogn Image Anal 21(2):140

    Google Scholar 

  53. JayaKumari C, Maruthi R (2012) Detection of hard exudates in color fundus images of the human retina. Procedia Eng 30:297–302

    Google Scholar 

  54. Lahmiri S, Gargour CS, Gabrea M (2014) Automated pathologies detection in retina digital images based on complex continuous wavelet transform phase angles. Healthc Technol Lett 1(4):104–108

    Google Scholar 

  55. Roychowdhury S, Koozekanani DD, Parhi KK (2014) DREAM: diabetic retinopathy analysis using machine learning. IEEE J Biomed Health Inform 18(5):1717–1728

    Google Scholar 

  56. Akram MU et al (2014) Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput Biol Med 45:161–171

    Google Scholar 

  57. Antal B, Hajdu A (2014) An ensemble-based system for automatic screening of diabetic retinopathy. Knowl Based Syst 60:20–27

    Google Scholar 

  58. Agurto C et al (2014) A multiscale optimization approach to detect exudates in the macula. IEEE J Biomed Health Inform 18(4):1328–1336

    Google Scholar 

  59. Franklin SW, Rajan SE (2014) Diagnosis of diabetic retinopathy by employing image processing technique to detect exudates in retinal images. IET Image Process 8(10):601–609

    Google Scholar 

  60. Akram MU et al (2014) Automated detection of exudates and macula for grading of diabetic macular edema. Comput Methods Progr Biomed 114(2):141–152

    Google Scholar 

  61. Sidibé D, Sadek I, Mériaudeau F (2015) Discrimination of retinal images containing bright lesions using sparse coded features and SVM. Comput Biol Med 62:175–184

    Google Scholar 

  62. Welikala RA et al (2015) Genetic algorithm based feature selection combined with dual classification for the automated detection of proliferative diabetic retinopathy. Comput Med Imaging Graph 43:64–77

    Google Scholar 

  63. Naqvi SAG, Zafar MF, Haq I ul (2015) Referral system for hard exudates in eye fundus. Comput Biol Med 64:217–235

    Google Scholar 

  64. Syed AM et al (2016) Automated diagnosis of macular edema and central serous retinopathy through robust reconstruction of 3D retinal surfaces. Comput Methods Prog Biomed 137:1–10

    Google Scholar 

  65. van Grinsven MJ et al (2016) Automatic differentiation of color fundus images containing drusen or exudates using a contextual spatial pyramid approach. Biomed Opt Express 7(3):709–725

    Google Scholar 

  66. Acharya UR et al (2017) Automated diabetic macular edema (DME) grading system using DWT, DCT features and maculopathy index. Comput Biol Med 84:59–68

    Google Scholar 

  67. Zhou W et al (2017) Automatic detection of exudates in digital color fundus images using superpixel multi-feature classification. IEEE Access 5:17077–17088

    Google Scholar 

  68. Amin J et al (2017) A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesions. J Comput Sci 19:153–164

    Google Scholar 

  69. Fraz MM et al (2017) Multiscale segmentation of exudates in retinal images using contextual cues and ensemble classification. Biomed Signal Process Control 35:50–62

    Google Scholar 

  70. Sánchez CI et al (2008) A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis. Med Eng Phys 30(3):350–357

    Google Scholar 

  71. Agurto C et al (2010) Multiscale AM–FM methods for diabetic retinopathy lesion detection. IEEE Trans Med Imaging 29(2):502–512

    Google Scholar 

  72. Pereira C, Gonçalves L, Ferreira M (2015) Exudate segmentation in fundus images using an ant colony optimization approach. Inf Sci 296:14–24

    MathSciNet  Google Scholar 

  73. Jaya T, Dheeba J, Singh NA (2015) Detection of hard exudates in colour fundus images using fuzzy support vector machine-based expert system. J Dig Imaging 28(6):761–768

    Google Scholar 

  74. Wisaeng K, Sa-Ngiamvibool W (2018) Improved fuzzy C-means clustering in the process of exudates detection using mathematical morphology. Soft Comput 22(8):2753–2764

    Google Scholar 

  75. Prentašić P, Lončarić S (2016) Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Comput Methods Prog Biomed 137:281–292

    Google Scholar 

  76. Costa P, Campilho A (2017) Convolutional bag of words for diabetic retinopathy detection from eye fundus images. IPSJ Trans Comput Vis Appl 9(1):10

    Google Scholar 

  77. Tan JH et al (2017) Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Inf Sci 420:66–76

    Google Scholar 

  78. Otálora S et al (2017) Training deep convolutional neural networks with active learning for exudate classification in eye fundus images. In: Intravascular imaging and computer assisted stenting, and large-scale annotation of biomedical data and expert label synthesis. Springer, pp 146–154

  79. Abbasi-Sureshjani S et al (2017) Boosted exudate segmentation in retinal images using residual nets. In: Fetal, infant and ophthalmic medical image analysis. OMIA 2017, FIFI 2017. Springer, pp 210–218. https://doi.org/10.1007/978-3-319-67561-9_24

    Google Scholar 

  80. Walter T et al (2002) A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Trans Med Imaging 21(10):1236–1243

    Google Scholar 

  81. Sopharak A et al (2008) Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods. Comput Med Imaging Graph 32(8):720–727

    Google Scholar 

  82. Sopharak A et al (2010) Fine exudate detection using morphological reconstruction enhancement. Int J Appl Biomed Eng 1(1):45–50

    Google Scholar 

  83. Welfer D, Scharcanski J, Marinho DR (2010) A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images. Comput Med Imaging Graph 34(3):228–235

    Google Scholar 

  84. Ranamuka NG, Meegama RGN (2013) Detection of hard exudates from diabetic retinopathy images using fuzzy logic. IET Image Process 7(2):121–130

    MathSciNet  Google Scholar 

  85. Mookiah MRK et al (2013) Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: a hybrid feature extraction approach. Knowl Based Syst 39:9–22

    Google Scholar 

  86. Zhang X et al (2014) Exudate detection in color retinal images for mass screening of diabetic retinopathy. Med Image Anal 18(7):1026–1043

    Google Scholar 

  87. Youssef D, Solouma NH (2012) Accurate detection of blood vessels improves the detection of exudates in color fundus images. Comput Methods Prog Biomed 108(3):1052–1061

    Google Scholar 

  88. Köse C et al (2012) Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images. Comput Methods Prog Biomed 107(2):274–293

    Google Scholar 

  89. Figueiredo IN et al (2015) Automated lesion detectors in retinal fundus images. Comput Biol Med 66:47–65

    Google Scholar 

  90. Banerjee S, Kayal D (2016) Detection of hard exudates using mean shift and normalized cut method. Biocybern Biomed Eng 36(4):679–685

    Google Scholar 

  91. Kar SS, Maity SP (2018) Automatic detection of retinal lesions for screening of diabetic retinopathy. IEEE Trans Biomed Eng 65(3):608–618

    Google Scholar 

  92. Kaur J, Mittal D (2018) A generalized method for the segmentation of exudates from pathological retinal fundus images. Biocybern Biomed Eng 38(1):27–53

    Google Scholar 

  93. Sinthanayothin C et al (2002) Automated detection of diabetic retinopathy on digital fundus images. Diab Med 19(2):105–112

    Google Scholar 

  94. Huiqi L, Chutatape O (2004) Automated feature extraction in color retinal images by a model based approach. IEEE Trans Biomed Eng 51(2):246–254

    Google Scholar 

  95. Sánchez CI et al (2009) Retinal image analysis based on mixture models to detect hard exudates. Med Image Anal 13(4):650–658

    Google Scholar 

  96. Esmaeili M et al (2012) Automatic detection of exudates and optic disk in retinal images using curvelet transform. IET Image Process 6(7):1005–1013

    MathSciNet  Google Scholar 

  97. Rocha A et al (2012) Points of interest and visual dictionaries for automatic retinal lesion detection. IEEE Trans Biomed Eng 59(8):2244–2253

    Google Scholar 

  98. Sánchez CI et al (2012) Contextual computer-aided detection: improving bright lesion detection in retinal images and coronary calcification identification in CT scans. Med Image Anal 16(1):50–62

    Google Scholar 

  99. Ali S et al (2013) Statistical atlas based exudate segmentation. Comput Med Imaging Graph 37(5–6):358–368

    Google Scholar 

  100. Harangi B, Hajdu A (2014) Automatic exudate detection by fusing multiple active contours and regionwise classification. Comput Biol Med 54:156–171

    Google Scholar 

  101. Zou X et al (2016) Learning-based visual saliency model for detecting diabetic macular edema in retinal image. Comput Intell Neurosci 2016:1

    Google Scholar 

  102. Maity M et al (2016) Fusion of entropy-based thresholding and active contour model for detection of exudate and optic disc in color fundus images. J Med Biol Eng 36(6):795–809

    Google Scholar 

  103. Liu Q et al (2017) A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images. Comput Med Imaging Graph 55:78–86

    Google Scholar 

  104. Molina-Casado JM, Carmona EJ, García-Feijoó J (2017) Fast detection of the main anatomical structures in digital retinal images based on intra-and inter-structure relational knowledge. Comput Methods Prog Biomed 149:55–68

    Google Scholar 

  105. Roychowdhury S, Koozekanani DD, Parhi KK (2012) Screening fundus images for diabetic retinopathy. In: 2012 conference record of the forty sixth Asilomar conference on signals, systems and computers (ASILOMAR). IEEE, pp 1641–1645

  106. Antal B, Hajdu A (2012) Improving microaneurysm detection using an optimally selected subset of candidate extractors and preprocessing methods. Pattern Recogn 45(1):264–270

    Google Scholar 

  107. Basit A, Fraz MM (2015) Optic disc detection and boundary extraction in retinal images. Appl Opt 54(11):3440–3447

    Google Scholar 

  108. Abdullah M, Fraz MM, Barman SA (2016) Localization and segmentation of optic disc in retinal images using circular Hough transform and grow-cut algorithm. PeerJ 4:e2003

    Google Scholar 

  109. Zahoor MN, Fraz MM (2017) Fast optic disc segmentation in retinal images using polar transform. In: Annual conference on medical image understanding and analysis. Springer, pp 38–49

  110. Zahoor MN, Fraz MM (2018) A correction to the article fast optic disc segmentation in retina using polar transform. IEEE Access 6:4845–4849

    Google Scholar 

  111. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436

    Google Scholar 

  112. Litjens G et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Google Scholar 

  113. Badar M, Shahzad M, Fraz MM (2018) Simultaneous segmentation of multiple retinal pathologies using fully convolutional deep neural network. In: Annual conference on medical image understanding and analysis. Springer, pp 313–324

  114. AlBadawi S, Fraz MM (2018) Arterioles and venules classification in retinal images using fully convolutional deep neural network. In: International conference image analysis and recognition. Springer, pp 659–668

  115. Frangi AF et al (1998) Multiscale vessel enhancement filtering. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 130–137

  116. Nesterov Y (1983) A method for unconstrained convex minimization problem with the rate of convergence O (\(1/{{{\rm k}}}^{{\wedge }}2\)) In: Doklady AN USSR, vol 269, pp 543–547

  117. Mookiah MRK et al (2013) Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation. Proc Inst Mech Eng H J Eng Med 227(1):37–49

    Google Scholar 

  118. Kahai P, Namuduri KR, Thompson H (2006) A decision support framework for automated screening of diabetic retinopathy. Int J Biomed Imaging 2006:8

    Google Scholar 

  119. Niemeijer M et al (2007) Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. Invest Ophthalmol Vis Sci 48(5):2260–2267

    Google Scholar 

  120. Niemeijer M, Abràmoff MD, Van Ginneken B (2009) Fast detection of the optic disc and fovea in color fundus photographs. Med Image Anal 13(6):859–870

    Google Scholar 

  121. Chan T, Vese L (1999) An active contour model without edges. In: International conference on scale-space theories in computer vision. Springer, pp 141–151

  122. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  123. Lin TY et al (2014) Microsoft coco: common objects in context. In: European conference on computer vision. Springer, pp 740–755

Download references

Acknowledgements

No grant has been received for this research from any source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Fraz.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraz, M.M., Badar, M., Malik, A.W. et al. Computational Methods for Exudates Detection and Macular Edema Estimation in Retinal Images: A Survey. Arch Computat Methods Eng 26, 1193–1220 (2019). https://doi.org/10.1007/s11831-018-9281-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-018-9281-4

Navigation