Skip to main content
Log in

An Overview of the Combined Interface Boundary Condition Method for Fluid–Structure Interaction

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This review article summarizes the basis and recent developments on the combined interface boundary condition (CIBC) method for the numerical simulation of fluid–structure interaction (FSI) problems. To represent the continual reciprocity between both media better, the CIBC method employs a Gauss–Seidel-like procedure to transform the traditional interface conditions into the velocity and traction corrections. A free parameter is adopted to control the effect of such a treatment on the fluid–structure interface. The thorough derivation of the CIBC method is presented, hence providing the theoretical basis of two improved formulations of the method. The relevant issues are deeply discussed for the numerical implementation. The CIBC method is subsequently introduced into various partitioned solution schemes. After describing all ingredients of our coupling strategies in detail, intensive FSI examples are tested to justify the feasibility, robustness and efficiency of the developed methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47

Similar content being viewed by others

References

  1. Abdullah MM, Walsh KK, Grady S, Wesson GD (2005) Modeling flow around bluff bodies. J Comput Civil Eng ASCE 19(1):104–107

    Google Scholar 

  2. Afrasiab H, Movahhedy MR, Assempour A (2012) fluid–structure interaction analysis in microfluidic devices: a dimensionless finite element approach. Int J Numer Meth Fluids 68(9):1073–1086

    MathSciNet  MATH  Google Scholar 

  3. Anagnostopoulos P (1994) Numerical investigation of response and wake characteristics of a vortex-excited cylinder in a uniform stream. J Fluids Struct 8(4):367–390

    Google Scholar 

  4. Anagnostopoulos P, Bearman PW (1992) Response characteristics of a vortex-excited cylinder at low Reynolds numbers. J Fluids Struct 6(1):39–50

    Google Scholar 

  5. Anju A, Maruoka A, Kawahara M (1997) 2-D fluid–structure interaction problems by an arbitrary Lagrangian–Eulerian finite element method. Int J Comput Fluid Dyn 8(1):1–9

    MATH  Google Scholar 

  6. Badia S, Codina R (2007) On some fluid–structure iterative algorithms using pressure segregation methods. Application to aeroelasticity. Int J Numer Meth Eng 72(1):46–71

    MathSciNet  MATH  Google Scholar 

  7. Badia S, Nobile F, Vergara C (2008) fluid–structure partitioned procedures based on Robin transmission conditions. J Comput Phys 227(14):7027–7051

    MathSciNet  MATH  Google Scholar 

  8. Baek H, Karniadakis GE (2012) A convergence study of a new partitioned fluid–structure interaction algorithm based on fictitious mass and damping. J Comput Phys 231(2):629–652

    MathSciNet  MATH  Google Scholar 

  9. Bahmani MH, Akbari MH (2010) Effects of mass and damping ratios on VIV of a circular cylinder. Ocean Eng 37(5):511–519

    Google Scholar 

  10. Baiges J, Codina R (2010) The fixed-mesh ALE approach applied to solid mechanics and fluid–structure interaction problems. Int J Numer Meth Eng 81(12):1529–1557

    MathSciNet  MATH  Google Scholar 

  11. Barrero-Gil A, Sanz-Andres A, Roura M (2009) Transverse galloping at low Reynolds numbers. J Fluids Struct 25(7):1236–1242

    Google Scholar 

  12. Bathe KJ (2007) Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme. Comput Struct 85(7):437–445

    MathSciNet  Google Scholar 

  13. Bathe KJ, Baig MMI (2005) On a composite implicit time integration procedure for nonlinear dynamics. Comput Struct 83(31):2513–2524

    MathSciNet  Google Scholar 

  14. Bathe KJ, Noh G (2012) Insight into an implicit time integration scheme for structural dynamics. Comput Struct 98:1–6

    Google Scholar 

  15. Bathe KJ, Ramm E, Wilson EL (1975) Finite element formulations for large deformation dynamic analysis. Int J Numer Meth Eng 9(2):353–386

    MATH  Google Scholar 

  16. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43(1):3–37

    MathSciNet  MATH  Google Scholar 

  17. Bekka N, Sellam M, Chpoun A (2015) Aeroelastic stability analysis of a flexible over-expanded rocket nozzle using numerical coupling by the method of transpiration. J Fluids Struct 56:89–106

    Google Scholar 

  18. Bevan RLT, Boileau E, van Loon R, Lewis RW, Nithiarasu P (2016) A comparative study of fractional step method in its quasi-implicit, semi-implicit and fully-explicit forms for incompressible flows. Int J Numer Methods Heat Fluid Flow 26(3/4):595–623

    MathSciNet  MATH  Google Scholar 

  19. Blevins RD (1990) Flow-induced vibration, 2nd edn. Van Nostrand Reinhold Co. Inc., New York

    MATH  Google Scholar 

  20. Blom FJ (1998) A monolithical fluid–structure interaction algorithm applied to the piston problem. Comput Methods Appl Mech Eng 167(3):369–391

    MathSciNet  MATH  Google Scholar 

  21. Braun AL, Awruch AM (2009) A partitioned model for fluid–structure interaction problems using hexahedral finite elements with one-point quadrature. Int J Numer Meth Eng 79(5):505–549

    MathSciNet  MATH  Google Scholar 

  22. Bridges TJ (1997) Multi-symplectic structures and wave propagation. Math Proc Camb Philos Soc 121(1):147–190

    MathSciNet  MATH  Google Scholar 

  23. van Brummelen EH (2009) Added mass effects of compressible and incompressible flows in fluid–structure interaction. J Appl Mech ASME 76(2):021,206

    Google Scholar 

  24. Causin P, Gerbeau JF, Nobile F (2005) Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput Methods Appl Mech Eng 194(42):4506–4527

    MathSciNet  MATH  Google Scholar 

  25. Cebral JR, Löhner R (2005) On the loose coupling of implicit time-marching codes. In: Proceedings of the 43th AIAA aerospace sciences meeting and exhibit. American Institute of Aeronautics and Astronautics, Reno, Nevada, pp 1–15

  26. Chorin AJ (1968) Numerical solution of the Navier–Stokes equations. Math Comput 22(104):745–762

    MathSciNet  MATH  Google Scholar 

  27. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha\) method. J Appl Mech ASME 60(2):371–375

    MathSciNet  MATH  Google Scholar 

  28. Codina R, Vázquez M, Zienkiewicz OC (1998) A general algorithm for compressible and incompressible flows. Part III: the semi-implicit form. Int J Numer Meth Fluids 27(1–4):13–32

    MATH  Google Scholar 

  29. Codina R, Zienkiewicz OC (2002) CBS versus GLS stabilization of the incompressible Navier–Stokes equations and the role of the time step as stabilization parameter. Commun Numer Methods Eng 18(2):99–112

    MATH  Google Scholar 

  30. Cori JF, Etienne S, Garon A, Pelletier D (2015) High-order implicit Runge–Kutta time integrators for fluid–structure interactions. Int J Numer Meth Fluids 78(7):385–412

    MathSciNet  Google Scholar 

  31. Cui XY, Liu GR, Li GY, Zhao X, Nguyen TT, Sun GY (2008) A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells. Comput Model Eng Sci 28(2):109–126

    MathSciNet  MATH  Google Scholar 

  32. Dai KY, Liu GR (2007) Free and forced vibration analysis using the smoothed finite element method (SFEM). J Sound Vib 301(3):803–820

    Google Scholar 

  33. De Boer A, Van Zuijlen AH, Bijl H (2007) Review of coupling methods for non-matching meshes. Comput Methods Appl Mech Eng 196(8):1515–1525

    MathSciNet  MATH  Google Scholar 

  34. De Rosis A, Falcucci G, Ubertini S, Ubertini F, Succi S (2013) Lattice Boltzmann analysis of fluid–structure interaction with moving boundaries. Commun Comput Phys 13(03):823–834

    MATH  Google Scholar 

  35. Degroote J (2013) Partitioned simulation of fluid–structure interaction. Arch Comput Methods Eng 20(3):185–238

    MathSciNet  MATH  Google Scholar 

  36. DeJong A, Liang C (2014) Parallel spectral difference method for predicting 3D vortex-induced vibrations. Comput Fluids 98:17–26

    MathSciNet  Google Scholar 

  37. Deparis S, Fernández MA, Formaggia L (2003) Acceleration of a fixed point algorithm for fluid–structure interaction using transpiration conditions. ESAIM. Math Model Numer Anal 37(4):601–616

    MathSciNet  MATH  Google Scholar 

  38. Dettmer W, Perić D (2006) A computational framework for fluid-rigid body interaction: finite element formulation and applications. Comput Methods Appl Mech Eng 195(13):1633–1666

    MathSciNet  MATH  Google Scholar 

  39. Dettmer W, Perić D (2006) A computational framework for fluid–structure interaction: finite element formulation and applications. Comput Methods Appl Mech Eng 195(41):5754–5779

    MATH  Google Scholar 

  40. Dettmer WG, Perić D (2007) A fully implicit computational strategy for strongly coupled fluid–solid interaction. Arch Comput Methods Eng 14(3):205–247

    MathSciNet  MATH  Google Scholar 

  41. Dettmer WG, Perić D (2013) A new staggered scheme for fluid–structure interaction. Int J Numer Meth Eng 93(1):1–22

    MathSciNet  MATH  Google Scholar 

  42. Döerfel MR, Simeon B (2013) Fluid–structure interaction: acceleration of strong coupling by preconditioning of the fixed-point iteration. In: Numerical mathematics and advanced applications 2011. Springer, Berlin, pp 741–749

  43. Donea J, Huerta A, Ponthot JP, Rodriguez-Ferran A (2004) Chapter 14: arbitrary Lagrangian–Eulerian Methods. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics vol 1: fundamentals. Wiley, West Sussex, pp 413–437

    Google Scholar 

  44. Dörfel MR, Simeon B (2010) Analysis and acceleration of a fluid–structure interaction coupling scheme. In: Numerical mathematics and advanced applications 2009. Springer, Uppsala, pp 307–315

  45. Étienne S, Garon A, Pelletier D (2009) Perspective on the geometric conservation law and finite element methods for ALE simulations of incompressible flow. J Comput Phys 228(7):2313–2333

    MathSciNet  MATH  Google Scholar 

  46. Fanion T, Fernández M, Le Tallec P (2000) Deriving adequate formulations for fluid–structure interaction problems: from ALE to transpiration. Revue Européenne des Élém 9(6–7):681–708

    MATH  Google Scholar 

  47. Farhat C, Geuzaine P, Brown G (2003) Application of a three-field nonlinear fluid–structure formulation to the prediction of the aeroelastic parameters of an F-16 fighter. Comput Fluids 32(1):3–29

    MATH  Google Scholar 

  48. Farhat C, Lesoinne M (2000) Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Comput Methods Appl Mech Eng 182(3):499–515

    MATH  Google Scholar 

  49. Farhat C, Lesoinne M, Maman N (1995) Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation and distributed solution. Int J Numer Meth Fluids 21(10):807–835

    MathSciNet  MATH  Google Scholar 

  50. Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190(24):3247–3270

    MATH  Google Scholar 

  51. Feng X (2000) Analysis of finite element methods and domain decomposition algorithms for a fluid–solid interaction problem. SIAM J Numer Anal 38(4):1312–1336

    MathSciNet  MATH  Google Scholar 

  52. Fernández MA, Gerbeau JF, Grandmont C (2007) A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Int J Numer Meth Eng 69(4):794–821

    MathSciNet  MATH  Google Scholar 

  53. Filippini G, Dalcin L, Nigro N, Storti M (2008) Fluid-rigid body interaction by PETs-FEM driven by Python. Mecánica Computac XXVII(8):489–504

    Google Scholar 

  54. Förster C, Wall WA, Ramm E (2007) Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput Methods Appl Mech Eng 196(7):1278–1293

    MathSciNet  MATH  Google Scholar 

  55. Fourestey G, Piperno S (2004) A second-order time-accurate ALE Lagrange–Galerkin method applied to wind engineering and control of bridge profiles. Comput Methods Appl Mech Eng 193(39):4117–4137

    MATH  Google Scholar 

  56. Govardhan R, Williamson CHK (2000) Modes of vortex formation and frequency response of a freely vibrating cylinder. J Fluid Mech 420:85–130

    MathSciNet  MATH  Google Scholar 

  57. Guidoboni G, Glowinski R, Cavallini N, Canic S (2009) Stable loosely-coupled-type algorithm for fluid–structure interaction in blood flow. J Comput Phys 228(18):6916–6937

    MathSciNet  MATH  Google Scholar 

  58. Habchi C, Russeil S, Bougeard D, Harion JL, Lemenand T, Ghanem A, Valle DD, Peerhossaini H (2013) Partitioned solver for strongly coupled fluid–structure interaction. Comput Fluids 71:306–319

    MathSciNet  MATH  Google Scholar 

  59. Han Z, Zhou D, He T, Tu J, Li C, Kwok KC, Fang C (2015) Flow-induced vibrations of four circular cylinders with square arrangement at low Reynolds numbers. Ocean Eng 96:21–33

    Google Scholar 

  60. Han Z, Zhou D, Tu J, Fang C, He T (2014) Flow over two side-by-side square cylinders by CBS finite element scheme of Spalart–Allmaras model. Ocean Eng 87:40–49

    Google Scholar 

  61. He T (2015) On a partitioned strong coupling algorithm for modeling fluid–structure interaction. Int J Appl Mech 7(2):1550,021

    Google Scholar 

  62. He T (2015) Partitioned coupling strategies for fluid–structure interaction with large displacement: explicit, implicit and semi-implicit schemes. Wind Struct 20(3):423–448

    Google Scholar 

  63. He T (2015) A partitioned implicit coupling strategy for incompressible flow past an oscillating cylinder. Int J Comput Methods 12(2):1550,012

    MathSciNet  Google Scholar 

  64. He T (2015) Semi-implicit coupling of CS-FEM and FEM for the interaction between a geometrically nonlinear solid and an incompressible fluid. Int J Comput Methods 12(5):1550,025

    MathSciNet  Google Scholar 

  65. He T (2016) A CBS-based partitioned semi-implicit coupling algorithm for fluid–structure interaction using MCIBC method. Comput Methods Appl Mech Eng 298:252–278

    MathSciNet  Google Scholar 

  66. He T, Wang T (2016) The use of artificial compressibility to improve partitioned semi-implicit FSI coupling within the classical Chorin-Témam projection framework (submitted)

  67. He T, Zhang K (2015) Combined interface boundary condition method for fluid–structure interaction: some improvements and extensions. Ocean Eng 109:243–255

    Google Scholar 

  68. He T, Zhou D, Bao Y (2012) Combined interface boundary condition method for fluid-rigid body interaction. Comput Methods Appl Mech Eng 223:81–102

    MathSciNet  MATH  Google Scholar 

  69. He T, Zhou D, Han Z, Tu J, Ma J (2014) Partitioned subiterative coupling schemes for aeroelasticity using combined interface boundary condition method. Int J Comput Fluid Dyn 28(6–10):272–300

    MathSciNet  Google Scholar 

  70. Hilber HM, Hughes TJ, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq Eng Struct Dyn 5(3):283–292

    Google Scholar 

  71. Hou G, Wang J, Layton A (2012) Numerical methods for fluid–structure interaction—a review. Commun Comput Phys 12(2):337–377

    MathSciNet  Google Scholar 

  72. Hu Z, Tang W, Xue H, Zhang X (2016) A SIMPLE-based monolithic implicit method for strong-coupled fluid–structure interaction problems with free surfaces. Comput Methods Appl Mech Eng 299:90–115

    MathSciNet  Google Scholar 

  73. Hübner B, Walhorn E, Dinkier, D (2001) Strongly coupled analysis of fluid–structure interaction using space-time finite elements. In: Proceedings of the 2nd European conference on computational mechanics. Cracow, Poland, pp 546–547

  74. Irons BM, Tuck RC (1969) A version of the Aitken accelerator for computer iteration. Int J Numer Meth Eng 1(3):275–277

    MATH  Google Scholar 

  75. Jaiman R, Geubelle P, Loth E, Jiao X (2007) Stable and accurate loosely-coupled scheme for unsteady fluid–structure interaction. In: Proceedings of the 45th AIAA aerospace sciences meeting and exhibit. American Institute of Aeronautics and Astronautics, Reno, Nevada, pp 1–28

  76. Jaiman R, Geubelle P, Loth E, Jiao X (2011) Combined interface boundary condition method for unsteady fluid–structure interaction. Comput Methods Appl Mech Eng 200(1):27–39

    MathSciNet  MATH  Google Scholar 

  77. Jaiman R, Geubelle P, Loth E, Jiao X (2011) Transient fluid–structure interaction with non-matching spatial and temporal discretizations. Comput Fluids 50(1):120–135

    MathSciNet  MATH  Google Scholar 

  78. Jaiman RK (2012) Advances in ALE based fluid–structure interaction modeling for offshore engineering applications. In: Eberhardsteiner J, Böhm H, Rammerstorfer F (eds) Proceedings of the 6th European congress on computational methods in applied sciences and engineering (ECCOMAS 2012). Austria, Vienna, pp 1–11

    Google Scholar 

  79. Jaiman RK, Guan MZ, Miyanawala TP (2016) Partitioned iterative and dynamic subgrid-scale methods for freely vibrating square-section structures at subcritical Reynolds number. Comput Fluid 133:68–89

    MathSciNet  Google Scholar 

  80. Jaiman RK, Jiao X, Geubelle PH, Loth E (2006) Conservative load transfer along curved fluid-solid interface with non-matching meshes. J Comput Phys 218(1):372–397

    MATH  Google Scholar 

  81. Jaiman RK, Pillalamarri NR, Guan MZ (2016) A stable second-order partitioned iterative scheme for freely vibrating low-mass bluff bodies in a uniform flow. Comput Methods Appl Mech Eng 301:187–215

    MathSciNet  Google Scholar 

  82. Jaiman RK, Shakib F, Oakley OH, Constantinides Y (2009) Fully coupled fluid–structure interaction for offshore applications. In: Proceedings of the 28th international conference on ocean., offshore and arctic engineering. American Society of Mechanical Engineers, Honolulu, Hawaii, pp 757–765

  83. Jan YJ, Sheu TWH (2004) Finite element analysis of vortex shedding oscillations from cylinders in the straight channel. Comput Mech 33(2):81–94

    MATH  Google Scholar 

  84. Joly A, Etienne S, Pelletier D (2012) Galloping of square cylinders in cross-flow at low Reynolds numbers. J Fluids Struct 28:232–243

    Google Scholar 

  85. Küttler U, Wall WA (2008) Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput Mech 43(1):61–72

    MATH  Google Scholar 

  86. Küttler U, Wall WA (2009) Vector extrapolation for strong coupling fluid–structure interaction solvers. J Appl Mech ASME 76(2):021,205

    Google Scholar 

  87. Le Tallec P, Mouro J (2001) Fluid structure interaction with large structural displacements. Comput Methods Appl Mech Eng 190(24):3039–3067

    MATH  Google Scholar 

  88. Lefrançois E (2008) A simple mesh deformation technique for fluid–structure interaction based on a submesh approach. Int J Numer Meth Eng 75(9):1085–1101

    MathSciNet  MATH  Google Scholar 

  89. Lesoinne M, Farhat C (1996) Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations. Comput Methods Appl Mech Eng 134(1):71–90

    MATH  Google Scholar 

  90. Li L, Sherwin S, Bearman PW (2002) A moving frame of reference algorithm for fluid/structure interaction of rotating and translating bodies. Int J Numer Meth Fluids 38(2):187–206

    MATH  Google Scholar 

  91. Liew KM, Wang WQ, Zhang LX, He XQ (2007) A computational approach for predicting the hydroelasticity of flexible structures based on the pressure Poisson equation. Int J Numer Meth Eng 72(13):1560–1583

    MathSciNet  MATH  Google Scholar 

  92. Liu GR, Dai KY, Nguyen TT (2007) A smoothed finite element method for mechanics problems. Comput Mech 39(6):859–877

    MATH  Google Scholar 

  93. Liu J, Jaiman RK, Gurugubelli PS (2014) A stable second-order scheme for fluid–structure interaction with strong added-mass effects. J Comput Phys 270:687–710

    MathSciNet  MATH  Google Scholar 

  94. Liu X, Qin N, Xia H (2006) Fast dynamic grid deformation based on Delaunay graph mapping. J Comput Phys 211(2):405–423

    MATH  Google Scholar 

  95. Löhner R, Haug E, Michalski A, Muhammad B, Drego A, Nanjundaiah R, Zarfam R (2015) Recent advances in computational wind engineering and fluid–structure interaction. J Wind Eng Ind Aerodyn 144:14–23

    Google Scholar 

  96. Markou GA, Mouroutis ZS, Charmpis DC, Papadrakakis M (2007) The ortho-semi-torsional (OST) spring analogy method for 3D mesh moving boundary problems. Comput Methods Appl Mech Eng 196(4):747–765

    MATH  Google Scholar 

  97. Matthies HG, Steindorf J (2003) Partitioned strong coupling algorithms for fluid–structure interaction. Comput Struct 81(8):805–812

    Google Scholar 

  98. Mok DP, Wall WA (2001) Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures. In: Wall WA, Bletzinger KU, Schweizerhof K (eds) Trends in computational structural mechanics. CIMNE, Barcelona, pp 689–698

    Google Scholar 

  99. Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech ASCE 85(3):67–94

    Google Scholar 

  100. Nithiarasu P (2002) On boundary conditions of the characteristic based split (CBS) algorithm for fluid dynamics. Int J Numer Meth Eng 54(4):523–536

    MATH  Google Scholar 

  101. Nithiarasu P (2004) A fully explicit characteristic based split (CBS) scheme for viscoelastic flow calculations. Int J Numer Meth Eng 60(5):949–978

    MathSciNet  MATH  Google Scholar 

  102. Nithiarasu P (2006) A matrix free fractional step method for static and dynamic incompressible solid mechanics. Int J Comput Methods Eng Sci Mech 7(5):369–380

    MATH  Google Scholar 

  103. Nithiarasu P, Codina R, Zienkiewicz OC (2006) The Characteristic-Based Split (CBS) scheme—a unified approach to fluid dynamics. Int J Numer Meth Eng 66(10):1514–1546

    MathSciNet  MATH  Google Scholar 

  104. Nithiarasu P, Zienkiewicz OC (2000) On stabilization of the CBS algorithm: internal and external time steps. Int J Numer Meth Eng 48(6):875–880

    MathSciNet  MATH  Google Scholar 

  105. Nomura T (1993) Finite element analysis of vortex-induced vibrations of bluff cylinders. J Wind Eng Ind Aerodyn 46:587–594

    Google Scholar 

  106. Normura T, Hughes TJR (1992) An arbitrary Lagrangian–Eulerian finite element method for interaction of fluid and a rigid body. Comput Methods Appl Mech Eng 95(1):115–138

    Google Scholar 

  107. Olivier M, Dumas G, Morissette J (2009) A fluid–structure interaction solver for nano-air-vehicle flapping wings. In: Proceedings of the 19th AIAA computational fluid dynamics conference. American Institute of Aeronautics and Astronautics, San Antonio, Texas, pp 1–15

  108. Park KC, Felippa CA, DeRuntz JA (1977) Stabilization of staggered solution procedures for fluid–structure interaction analysis. In: Belytschko T, Geers TL (eds) Computational methods for fluid–structure interaction problems, New York, pp 95–124

  109. Parkinson GV, Smith JD (1964) The square prism as an aeroelastic non-linear oscillator. Quart J Mech Appl Math 17(2):225–239

    MATH  Google Scholar 

  110. Payen DJ, Bathe KJ (2012) A stress improvement procedure. Comput Struct 112–113:311–326

    Google Scholar 

  111. Piperno S (1997) Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations. Int J Numer Meth Fluids 25(10):1207–1226

    MathSciNet  MATH  Google Scholar 

  112. Prasanth TK, Mittal S (2008) Vortex-induced vibrations of a circular cylinder at low Reynolds numbers. J Fluid Mech 594:463–491

    MATH  Google Scholar 

  113. Rice JR, Tsompanopoulou P, Vavalis E (2000) Interface relaxation methods for elliptic differential equations. Appl Numer Math 32(2):219–245

    MathSciNet  MATH  Google Scholar 

  114. Robertson I, Li L, Sherwin SJ, Bearman PW (2003) A numerical study of rotational and transverse galloping rectangular bodies. J Fluids Struct 17(5):681–699

    Google Scholar 

  115. Roe B, Jaiman R, Haselbacher A, Geubelle PH (2008) Combined interface boundary condition method for coupled thermal simulations. Int J Numer Meth Fluids 57(3):329–354

    MathSciNet  MATH  Google Scholar 

  116. Roshko A (1954) On the development of turbulent wakes from vortex streets. Technical Report NACA TN 1191, National Advisory Committee for Aeronautics

  117. Rossi R, Oñate E (2010) Analysis of some partitioned algorithms for fluid–structure interaction. Eng Comput 27(1):20–56

    MATH  Google Scholar 

  118. Samaniego C, Houzeaux G, Samaniego E, Vázquez M (2015) Parallel embedded boundary methods for fluid and rigid-body interaction. Comput Methods Appl Mech Eng 290:387–419

    MathSciNet  Google Scholar 

  119. Sarpkaya T (2004) A critical review of the intrinsic nature of vortex-induced vibrations. J Fluids Struct 19(4):389–447

    Google Scholar 

  120. Sarrate J, Huerta A, Donea J (2001) Arbitrary Lagrangian–Eulerian formulation for fluid-rigid body interaction. Comput Methods Appl Mech Eng 190(24):3171–3188

    MATH  Google Scholar 

  121. Schulz KW, Kallinderis Y (1998) Unsteady flow structure interaction for incompressible flows using deformable hybrid grids. J Comput Phys 143(2):569–597

    MATH  Google Scholar 

  122. Sen S, Mittal S (2011) Free vibration of a square cylinder at low Reynolds numbers. J Fluids Struct 27(5):875–884

    Google Scholar 

  123. Sen S, Mittal S, Biswas G (2011) Flow past a square cylinder at low Reynolds numbers. Int J Numer Meth Fluids 67(9):1160–1174

    MATH  Google Scholar 

  124. Souli M, Ouahsine A, Lewin L (2000) ALE formulation for fluid–structure interaction problems. Comput Methods Appl Mech Eng 190(5):659–675

    MATH  Google Scholar 

  125. Surana KS, Blackwell B, Powell M, Reddy JN (2014) Mathematical models for fluid-solid interaction and their numerical solutions. J Fluids Struct 50:184–216

    Google Scholar 

  126. Takagi S, Sugiyama K, Ii S, Matsumoto Y (2012) A review of full Eulerian methods for fluid structure interaction problems. J Appl Mech ASME 79(1):010,911

    Google Scholar 

  127. Teixeira PRF, Awruch AM (2005) Numerical simulation of fluid–structure interaction using the finite element method. Comput Fluid 34(2):249–273

    MATH  Google Scholar 

  128. Témam R (1968) Une méthode d’approximation de la solution des équations de Navier–Stokes. Bull la Société Math France 96:115–152

    MathSciNet  MATH  Google Scholar 

  129. Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluid 36(2):191–206

    MathSciNet  MATH  Google Scholar 

  130. Tsompanopoulou P, Vavalis E (2008) An experimental study of interface relaxation methods for composite elliptic differential equations. Appl Math Model 32(8):1620–1641

    MathSciNet  MATH  Google Scholar 

  131. Wall WA, Ramm E (1998) fluid–structure interaction based upon a stabilized (ALE) finite element method. In: Idelsohn SR, Oñate E, Dvorkin EN (eds) Proceedings of the 4th world congress on computational mechanics: new trends and applications. CIMNE, Barcelona, pp 1–20

    Google Scholar 

  132. Wei R, Sekine A, Shimura M (1995) Numerical analysis of 2D vortex-induced oscillations of a circular cylinder. Int J Numer Meth Fluids 21(10):993–1005

    MATH  Google Scholar 

  133. Williamson CHK, Roshko A (1988) Vortex formation in the wake of an oscillating cylinder. J Fluids Struct 2(4):355–381

    Google Scholar 

  134. Wood C, Gil AJ, Hassan O, Bonet J (2010) Partitioned block-Gauss–Seidel coupling for dynamic fluid–structure interaction. Comput Struct 88(23):1367–1382

    Google Scholar 

  135. Yamada T, Yoshimura S (2008) Line search partitioned approach for fluid–structure interaction analysis of flapping wing. CMES. Comput Model Eng Sci 24(1):51–60

    MATH  Google Scholar 

  136. Yang FL, Chen CH, Young DL (2011) A novel mesh regeneration algorithm for 2D FEM simulations of flows with moving boundary. J Comput Phys 230(9):3276–3301

    MathSciNet  MATH  Google Scholar 

  137. Yang J, Preidikman S, Balaras E (2008) A strongly coupled, embedded-boundary method for fluid–structure interactions of elastically mounted rigid bodies. J Fluids Struct 24(2):167–182

    Google Scholar 

  138. Young DL, Chang JT, Eldho TI (2001) A coupled BEM and arbitrary Lagrangian–Eulerian FEM model for the solution of two-dimensional laminar flows in external flow fields. Int J Numer Meth Eng 51(9):1053–1077

    MathSciNet  MATH  Google Scholar 

  139. Zeng D, Ethier CR (2005) A semi-torsional spring analogy model for updating unstructured meshes in 3D moving domains. Finite Elem Anal Des 41(11):1118–1139

    Google Scholar 

  140. Zhang K, Katsuchi H, Zhou D, Yamada H, Han Z (2016) Numerical study on the effect of shape modification to the flow around circular cylinders. J Wind Eng Ind Aerodyn 152:23–40

    Google Scholar 

  141. Zhou CY, So RMC, Lam K (1999) Vortex-induced vibrations of an elastic circular cylinder. J Fluids Struct 13(2):165–189

    Google Scholar 

  142. Zienkiewicz OC, Codina R (1995) A general algorithm for compressible and incompressible flow. Part I: the split, characteristic-based scheme. Int J Numer Meth Fluids 20(8–9):869–885

    MATH  Google Scholar 

  143. Zienkiewicz OC, Morgan K, Sai BVK, Codina R, Vasquez M (1995) A general algorithm for compressible and incompressible flow. Part II: tests on the explicit form. Int J Numer Meth Fluids 20(8–9):887–913

    MATH  Google Scholar 

  144. Zienkiewicz OC, Nithiarasu P, Codina R, Vazquez M, Ortiz P (1999) The characteristic-based-split procedure: an efficient and accurate algorithm for fluid problems. Int J Numer Meth Fluids 31(1):359–392

    MathSciNet  MATH  Google Scholar 

  145. Zienkiewicz OC, Taylor RL, Nithiarasu P (2005) The finite element method for fluid dynamics, 6th edn. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  146. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals, 6th edn. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

Download references

Acknowledgments

The authors thank anonymous referees for their insightful comments in improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao He.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Funding

This study was funded by National Natural Science Foundation of China (grant number 51508332), Innovation Program of Shanghai Municipal Education Commission (grant number 14ZZ129) and Capacity Building Program for Local Universities of Shanghai Municipal Science and Technology Commission (Grant number 14200503000).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, T., Zhang, K. An Overview of the Combined Interface Boundary Condition Method for Fluid–Structure Interaction. Arch Computat Methods Eng 24, 891–934 (2017). https://doi.org/10.1007/s11831-016-9193-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-016-9193-0

Navigation