Skip to main content
Log in

BIM-Enabled Structural Design: Impacts and Future Developments in Structural Modelling, Analysis and Optimisation Processes

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This review focuses on identifying the impacts and future development trends for current structural design practice in integration of building information modelling (BIM) technologies. BIM technologies, as novel information management schemes they are, are changing the conventional structure design processes. Currently, utilising BIM technologies for reshaping structural design has been widely acknowledged and embraced by both academic and industry circles. In this research, the current status and issues of the structural design processes (including modelling, analysis, and optimisation of structures) are fully investigated with emphases on specific design stages. The research put efforts on surveying the benefits of BIM in facilitating current structural design, such as systematic modelling processes, powerful interactive visualization platform, and standardised exchanging data interfaces. Impacts of personnel involvement in structural design when adopting BIM have also been identified in detail. Finally, a predicted cross-functional flowchart of BIM-enabled structural design for the near future is proposed, which shows future developing trends in improving structural design quality and addressing current issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sacks R, Barak R (2008) Impact of three-dimensional parametric modeling of buildings on productivity in structural engineering practice. Autom Constr 17(4):439–449

    Article  Google Scholar 

  2. Guo X, Cheng G-D (2010) Recent development in structural design and optimization. Acta Mech Sin 26(6):807–823

    Article  MATH  MathSciNet  Google Scholar 

  3. Eastman C, Teicholz P, Sacks R, Liston K (2008) Bim handbook: a guide to building information modeling for owners, managers, designers, engineers, and contractors. Wiley, New Jersey

    Book  Google Scholar 

  4. Becerik-Gerber B, Kensek K (2010) Building information modeling in architecture, engineering, and construction: emerging research directions and trends. J Prof Issues Eng Educ Pract 136(3):139–147

    Article  Google Scholar 

  5. Azhar S (2011) Building information modeling (bim): trends, benefits, risks, and challenges for the aec industry. Leadersh Manag Eng 11(3):241–252

    Article  Google Scholar 

  6. Eadie R, Browne M, Odeyinka H, McKeown C, McNiff S (2013) Bim implementation throughout the uk construction project lifecycle: an analysis. Autom Constr 36:145–151

    Article  Google Scholar 

  7. Komoto H, Tomiyama T (2012) A framework for computer-aided conceptual design and its application to system architecting of mechatronics products. Comput-Aided Des 44(10):931–946

    Article  Google Scholar 

  8. Nassar K, Thabet W, Beliveau Y (2003) Building assembly detailing using constraint-based modeling. Autom Constr 12(4):365–379

    Article  Google Scholar 

  9. Aish R, Woodbury R (2005) Multi-level interaction in parametric design. In: Butz A, Fisher B, Krüger A, Olivier P (eds) Smart graphics. Lecture notes in computer science, vol 3638. Springer, Berlin, pp 151–162

    Google Scholar 

  10. Lee G, Sacks R, Eastman CM (2006) Specifying parametric building object behavior (bob) for a building information modeling system. Autom Constr 15(6):758–776

    Article  Google Scholar 

  11. Sacks R, Eastman CM, Lee G (2004) Parametric 3d modeling in building construction with examples from precast concrete. Autom Constr 13(3):291–312

    Article  Google Scholar 

  12. Cavieres A, Gentry R, Al-Haddad T (2011) Knowledge-based parametric tools for concrete masonry walls: conceptual design and preliminary structural analysis. Autom Constr 20(6):716–728

    Article  Google Scholar 

  13. Rizza R (2005) Getting started with pro-engineer. Pearson/Prentice Hall, Wildfire

    Google Scholar 

  14. Bentley Generativecomponents v8i essentials: Bentley institute course guide. http://ftp2.bentley.com/dist/collateral/docs/microstation_generativecomponents/microstation_GC_v8i_essentials_book.pdf. Accessed 1 June 2012

  15. Payne A, Issa R The grasshopper primer. http://www.liftarchitects.com/storage/research/Grasshopper%20Primer_Second%20Edition_090323.pdf. Accessed 1 June 2012

  16. Aish R (2011) Designscript: origins, explanation, illustration. In: Design modeling symposium, Berlin, Oct. 10–12 2011, pp 1–18

  17. Javadi AA, Rezania M (2009) Intelligent finite element method: an evolutionary approach to constitutive modeling. Adv Eng Inform 23(4):442–451

    Article  Google Scholar 

  18. Dolšak B, Novak M (2011) Intelligent decision support for structural design analysis. Adv Eng Inform 25(2):330–340

    Article  Google Scholar 

  19. Hare W, Nutini J, Tesfamariam S (2013) A survey of non-gradient optimization methods in structural engineering. Adv Eng Softw 59:19–28

    Article  Google Scholar 

  20. Adeli H, Kamal O (1991) Efficient optimization of plane trusses. Adv Eng Softw Workstn 13(3):116–122

    Article  Google Scholar 

  21. Miguel LFF, Lopez RH, Miguel LFF (2013) Multimodal size, shape, and topology optimisation of truss structures using the firefly algorithm. Adv Eng Softw 56:23–37

    Article  Google Scholar 

  22. Habibi A (2012) New approximation method for structural optimization. J Comput Civil Eng 26(2):236–247

    Article  Google Scholar 

  23. Joseph KT (1987) A basis change strategy for the reduced gradient method and the optimum design of large structures. Int J Numer Methods Eng 24(7):1269–1281

    Article  MATH  Google Scholar 

  24. Patnaik SN, Guptill JD, Berke L (1995) Merits and limitations of optimality criteria method for structural optimization. Int J Numer Methods Eng 38(18):3087–3120

    Article  MATH  Google Scholar 

  25. Horowitz B, Afonso SMB (2002) Quadratic programming solver for structural optimisation using sqp algorithm. Adv Eng Softw 33(7–10):669–674

    Article  MATH  Google Scholar 

  26. Holland JH (1992) Adaptation in natural and artificial systems. MIT Press, Cambridge

    Google Scholar 

  27. Beyer H-G, Schwefel H-P (2002) Evolution strategies—a comprehensive introduction. Nat Comput 1(1):3–52

    Article  MATH  MathSciNet  Google Scholar 

  28. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MATH  MathSciNet  Google Scholar 

  29. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B: Cybern 26(1):29–41

    Article  Google Scholar 

  30. Gerold F, Beucke K, Seible F (2012) Integrative structural design. J Comput Civil Eng 26(6):720–726

    Article  Google Scholar 

  31. Lee S-I, Bae J-S, Cho YS (2012) Efficiency analysis of set-based design with structural building information modeling (s-bim) on high-rise building structures. Autom Constr 23:20–32

    Article  Google Scholar 

  32. Davila Delgado JM, Hofmeyer H (2013) Automated generation of structural solutions based on spatial designs. Autom Constr 35:528–541

    Article  Google Scholar 

  33. Fenves SJ, Garrett JH Jr, Kiliccote H, Law KH, Reed KA (1995) Computer representations of design standards and building codes: U.S. perspective. Int J Constr Inf Technol 3(1):13–34

    Google Scholar 

  34. Ozel F (1998) Life safety issues in hotel/casino occupancies. In: 2nd International conference on fire research and engineering, Gaithersburg, MA, Aug. 10–15 1998

  35. Han C, Kunz J, Law K (1999) Building design services in a distributed architecture. J Comput Civil Eng 13(1):12–22

    Article  Google Scholar 

  36. Picon L, Yannou B, Zaraket T, Minel S, Bertoluci G, Cluzel F, Farel R (2013) Use-phase memory: a tool for the sustainable construction and renovation of residential buildings. Autom Constr 36:53–70

    Article  Google Scholar 

  37. Masoso OT, Grobler LJ (2010) The dark side of occupants’ behaviour on building energy use. Energy Build 42(2):173–177

    Article  Google Scholar 

  38. Rey FJ, Velasco E, Varela F (2007) Building energy analysis (bea): a methodology to assess building energy labelling. Energy Build 39(6):709–716

    Article  Google Scholar 

  39. Schlueter A, Thesseling F (2009) Building information model based energy/exergy performance assessment in early design stages. Autom Constr 18(2):153–163

    Article  Google Scholar 

  40. Wang W, Rivard H, Zmeureanu R (2006) Floor shape optimization for green building design. Adv Eng Inform 20(4):363–378

    Article  Google Scholar 

  41. Nawari N (2012) Bim standard in off-site construction. J Archit Eng 18(2):107–113

    Article  Google Scholar 

  42. McGraw-Hill (2008) Building information modeling: transforming design and construction to achieve greater industry productivity. McGraw-Hill, New York

  43. Gupta A, Cemesova A, Hopfe CJ, Rezgui Y, Sweet T (2014) A conceptual framework to support solar pv simulation using an open-bim data exchange standard. Autom Constr 37:166–181

    Article  Google Scholar 

  44. Eastman CM, Sacks R, Lee G (2004) Functional modeling in parametric cad systems. In: Generative-CAD conference, PA, July 12–14 2004

  45. Vakiloroaya V, Ha QP, Samali B (2013) Energy-efficient hvac systems: simulation-empirical modelling and gradient optimization. Autom Constr 31:176–185

    Article  Google Scholar 

  46. Pan X, Han CS, Dauber K, Law KH (2006) Human and social behavior in computational modeling and analysis of egress. Autom Constr 15(4):448–461

    Article  Google Scholar 

  47. Porwal A, Hewage K (2012) Building information modeling-based analysis to minimize waste rate of structural reinforcement. J Constr Eng Manag 138(8):943–954

    Article  Google Scholar 

  48. Cho YS, Lee SI, Bae JS (2013) Reinforcement placement in a concrete slab object using structural building information modeling. Comput-Aided Civil Infrastruct Eng (published online)

  49. Aram S, Eastman C, Sacks R (2013) Requirements for bim platforms in the concrete reinforcement supply chain. Autom Constr 35:1–17

    Article  Google Scholar 

  50. Diao Y, Kato S, Hiyama K (2011) Development of an optimal design aid system based on building information modeling. Build Simul 4(4):315–320

    Article  Google Scholar 

  51. Hu Z, Zhang J, Deng Z (2008) Construction process simulation and safety analysis based on building information model and 4d technology. Tsinghua Scie Technol 13(S1):266–272

    Article  Google Scholar 

  52. Cerovsek T (2011) A review and outlook for a ‘building information model’ (bim): a multi-standpoint framework for technological development. Adv Eng Inform 25(2):224–244

    Article  Google Scholar 

  53. Autodesk Revit for building design and construction. http://www.autodesk.com/products/autodesk-revit-family/overview. Accessed 26 Nov 2013

  54. Tekla Tekla structures bim software. http://www.tekla.com/products/tekla-structures. Accessed 26 Nov 2013

  55. Wang X, Dunston PS (2013) Tangible mixed reality for remote design review: a study understanding user perception and acceptance. Vis Eng 1(1):1–15

    Article  Google Scholar 

  56. Dong S, Kamat V (2013) Smart: scalable and modular augmented reality template for rapid development of engineering visualization applications. Vis Eng 1(1):1

    Article  Google Scholar 

  57. Mistry P, Maes P (2009) Sixthsense: a wearable gestural interface. Paper presented at the ACM SIGGRAPH ASIA 2009 Sketches. Yokohama, Japan, Dec 17–19

  58. Wang X, Shin D (2003) Dunston P Issues in mixed reality-based design and collaboration environments. In: Construction research congress, pp 1–9

  59. Wang X, Kim MJ, Love PED, Kang S-C (2013) Augmented reality in built environment: classification and implications for future research. Autom Constr 32:1–13

    Article  MATH  Google Scholar 

  60. Wang X (2009) Augmented reality in architecture and design: potentials and challenges for application. Int J Archit Comput 7(2):309–326

    Article  Google Scholar 

  61. Rankohi S, Waugh L (2013) Review and analysis of augmented reality literature for construction industry. Vis Eng 1(1):9

    Article  Google Scholar 

  62. Bae H, Golparvar-Fard M, White J (2013) High-precision vision-based mobile augmented reality system for context-aware architectural, engineering, construction and facility management (aec/fm) applications. Vis Eng 1(1):3

    Article  Google Scholar 

  63. Yan W, Culp C, Graf R (2011) Integrating bim and gaming for real-time interactive architectural visualization. Autom Constr 20(4):446–458

    Article  Google Scholar 

  64. Wang X, Love PED, Kim MJ, Park C-S, Sing C-P, Hou L (2013) A conceptual framework for integrating building information modeling with augmented reality. Autom Constr 34:37–44

    Article  Google Scholar 

  65. Shen W, Shen Q, Sun Q (2012) Building information modeling-based user activity simulation and evaluation method for improving designer-user communications. Autom Constr 21:148–160

    Article  Google Scholar 

  66. Redmond A, Hore A, Alshawi M, West R (2012) Exploring how information exchanges can be enhanced through cloud bim. Autom Constr 24:175–183

    Article  Google Scholar 

  67. Singh V, Gu N, Wang X (2011) A theoretical framework of a bim-based multi-disciplinary collaboration platform. Autom Constr 20(2):134–144

    Article  Google Scholar 

  68. Shen W, Zhang X, Qiping Shen G, Fernando T (2013) The user pre-occupancy evaluation method in designer-client communication in early design stage: a case study. Autom Constr 32:112–124

    Article  Google Scholar 

  69. Geyer P (2012) Systems modelling for sustainable building design. Adv Eng Inform 26(4):656–668

    Article  Google Scholar 

  70. buildingSMART Industry foundation classes ifc2x edition 3 technical corrigendum 1. http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/index.htm. Accessed 20 Nov 2013

  71. Syal M, Mago S, Moody D (2007) Impact of leed-nc credits on contractors. J Archit Eng 13(4):174–179

    Article  Google Scholar 

  72. Faurbjerg LM, Pedersen SR, Jensen LB, Sørensen CN (2013) Reflections on how dgnb(ud) certification standards effect design methods. In: 2nd International workshop on design in civil and environmental engineering, Worcester, MA, June 28–29 2013

  73. gbXML Open green building xml schema: A building information modeling solution for our green world. http://www.gbxml.org/. Accessed 21 Nov 2013

  74. König M, Dirnbek J, Stankovski V (2013) Architecture of an open knowledge base for sustainable buildings based on linked data technologies. Autom Constr 35:542–550

    Article  Google Scholar 

  75. Wu IC, Chang S (2013) Visual req calculation tool for green building evaluation in taiwan. Autom Constr 35:608–617

    Article  Google Scholar 

  76. Lee S, Song D (2010) Prediction and evaluation method of wind environment in the early design stage using bim-based cfd simulation. IOP Conf Ser Mater Sci Eng 10(1):012035

    Article  Google Scholar 

  77. Mhalas A, Kassem M, Crosbie T, Dawood N (2013) A visual energy performance assessment and decision support tool for dwellings. Vis Eng 1(1):7

    Article  Google Scholar 

  78. Eastman C, Lee J-m, Jeong Y-s, Lee J-k (2009) Automatic rule-based checking of building designs. Autom Constr 18(8):1011–1033

    Article  Google Scholar 

  79. Zhang S, Teizer J, Lee J-K, Eastman CM, Venugopal M (2013) Building information modeling (bim) and safety: automatic safety checking of construction models and schedules. Autom Constr 29:183–195

    Article  Google Scholar 

  80. Martins JP, Monteiro A (2013) Lica: a bim based automated code-checking application for water distribution systems. Autom Constr 29:12–23

    Article  Google Scholar 

  81. Wang X, Dunston PS (2011) Comparative effectiveness of mixed reality-based virtual environments in collaborative design. IEEE Trans Syst Man Cybern Part C Appl Rev 41(3):284–296

    Article  Google Scholar 

  82. Chi H-L, Kang S-C, Wang X (2013) Research trends and opportunities of augmented reality applications in architecture, engineering, and construction. Autom Constr 33:116–122

    Article  Google Scholar 

  83. Jeong YS, Eastman CM, Sacks R, Kaner I (2009) Benchmark tests for bim data exchanges of precast concrete. Autom Constr 18(4):469–484

  84. Hayashi M, Nakajima K (2013) Openmp/mpi hybrid parallel ilu(k) preconditioner for fem based on extended hierarchical interface decomposition for multi-core clusters. In: Daydé M, Marques O, Nakajima K (eds) High performance computing for computational science—vecpar 2012, vol 7851. Springer, Berlin, pp 278–291

    Chapter  Google Scholar 

  85. Kirsch U (2008) Reanalysis of structures: a unified approach for linear, nonlinear, static and dynamic systems. Springer, Dordrecht

    Google Scholar 

  86. Kim Y-I, Park G-J (2010) Nonlinear dynamic response structural optimization using equivalent static loads. Comput Methods Appl Mech Eng 199(9–12):660–676

    Article  MATH  Google Scholar 

  87. Georgescu S, Chow P, Okuda H (2013) Gpu acceleration for fem-based structural analysis. Arch Comput Methods Eng 20(2):111–121

    Article  MathSciNet  Google Scholar 

  88. Xue X, Shen Q, Fan H, Li H, Fan S (2012) It supported collaborative work in a/e/c projects: a ten-year review. Autom Constr 21:1–9

    Article  Google Scholar 

  89. Wang J, Ghosn M (2005) Linkage-shredding genetic algorithm for reliability assessment of structural systems. Struct Saf 27(1):49–72

    Article  Google Scholar 

  90. Deng L, Ghosn M, Shao S (2005) Development of a shredding genetic algorithm for structural reliability. Struct Saf 27(2):113–131

    Article  Google Scholar 

  91. Elbehairy H, Elbeltagi E, Hegazy T, Soudki K (2006) Comparison of two evolutionary algorithms for optimization of bridge deck repairs. Comput-Aided Civil Infrastruct Eng 21(8):561–572

    Article  Google Scholar 

  92. Hasançebi O (2007) Optimization of truss bridges within a specified design domain using evolution strategies. Eng Optim 39(6):737–756

    Article  Google Scholar 

  93. Rahami H, Kaveh A, Aslani M (2011) A hybrid modified genetic-nelder mead simplex algorithm for large-scale truss optimization. Iran Univ Sci Technol 1(1):29–46

    Google Scholar 

  94. Luh G-C, Lin C-Y (2011) Optimal design of truss-structures using particle swarm optimization. Comput Struct 89(23–24):2221–2232

    Article  Google Scholar 

  95. Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search algorithm. Comput Struct 82(9–10):781–798

    Article  Google Scholar 

  96. Kanno Y, Guo X (2010) A mixed integer programming for robust truss topology optimization with stress constraints. Int J Numer Methods Eng 83(13):1675–1699

    Article  MATH  MathSciNet  Google Scholar 

  97. Lamberti L, Pappalettere C (2003) Move limits definition in structural optimization with sequential linear programming. Part ii: numerical examples. Comput Struct 81(4):215–238

  98. Lamberti L, Pappalettere C (2004) Improved sequential linear programming formulation for structural weight minimization. Comput Methods Appl Mech Eng 193(33–35):3493–3521

  99. Sedaghati R (2005) Benchmark case studies in structural design optimization using the force method. Int J Solids Struct 42(21–22):5848–5871

    Article  MATH  Google Scholar 

  100. Hasançebi O, Çarbaş S, Doğan E, Erdal F, Saka MP (2010) Comparison of non-deterministic search techniques in the optimum design of real size steel frames. Comput Struct 88(17–18):1033–1048

    Article  Google Scholar 

  101. Degertekin SO (2008) Optimum design of steel frames using harmony search algorithm. Struct Multidisc Optim 36(4):393–401

    Article  Google Scholar 

  102. Ohsaki M, Kinoshita T, Pan P (2007) Multiobjective heuristic approaches to seismic design of steel frames with standard sections. Earthq Eng Struct Dyn 36(11):1481–1495

    Article  Google Scholar 

  103. Aydoğdu İ, Saka MP (2012) Ant colony optimization of irregular steel frames including elemental warping effect. Adv Eng Softw 44(1):150–169

    Article  Google Scholar 

  104. Balling R, Briggs R, Gillman K (2006) Multiple optimum size/shape/topology designs for skeletal structures using a genetic algorithm. J Struct Eng 132(7):1158–1165

    Article  Google Scholar 

  105. Sahab MG, Ashour AF, Toropov VV (2005) A hybrid genetic algorithm for reinforced concrete flat slab buildings. Comput Struct 83(8–9):551–559

    Article  Google Scholar 

  106. Kaveh A, Sabzi O (2011) A comparative study of two meta-heuristic algorithms for optimum design of reinforced concrete frames. Int J Civil Eng 9(3):193–206

    Google Scholar 

  107. Graitec Advance design. http://www.graitec.com/En/ad_main.asp. Accessed 3 Dec 2013

  108. PKPM Pkpm. http://www.pkpm.cn/. Accessed 3 Dec 2013

  109. StruSoft Fem-design. http://www.strusoft.com/products/fem-design. Accessed 3 Dec 2013

  110. SOFiSTiK Fem packages—modern structural analysis. http://www.sofistik.com/en/packages/. Accessed 3 Dec 2013

  111. Autodesk Simulation—analysis and simulation software. http://www.autodesk.com/products/autodesk-simulation-family/overview. Accessed 3 Dec 2013

  112. blueCAPE Bluecfd-air. http://joomla.bluecape.com.pt/index.php?option=com_content&task=view&id=74&Itemid=30. Accessed 3 Dec 2013

Download references

Acknowledgments

This work is also partially sponsored by Shanghai International Enterprise Cooperation Program of STCSM (Science and Technology Committee of Shanghai Municipality) under Grant Number of 12510701700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Jiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, HL., Wang, X. & Jiao, Y. BIM-Enabled Structural Design: Impacts and Future Developments in Structural Modelling, Analysis and Optimisation Processes. Arch Computat Methods Eng 22, 135–151 (2015). https://doi.org/10.1007/s11831-014-9127-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-014-9127-7

Keywords

Navigation