Skip to main content
Log in

Effect of diurnal vs. nocturnal pollinators and flower position on the reproductive success of Echium simplex

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Nocturnal pollination plays an important role in sexual plant reproduction but has been overlooked, partially because of intrinsic difficulties in field experimentation. Even less attention has received the effect of within-inflorescence spatial position (distal or proximal) on nocturnal pollinators of columnar plants, despite numerous studies examining the relationship between such position and reproductive success. Woody endemic Echium simplex possesses large erect inflorescences bearing thousands of flowers which are visited by a wide array of diurnal and nocturnal animals. In this study, we identified nocturnal visitors and compared their pollination effectiveness with that of diurnal pollinators in different inflorescence sections by means of selective exclosures in NE Tenerife (Canary Islands). Nocturnal visitors included at least ten morphospecies of moths (such as Paradrina rebeli and Eupithecia sp.), two coleopteran species (mainly Alloxantha sp.), neuropterans (Chrysoperla carnea), dictyopterans (Phyllodromica brullei), dermapterans (Guanchia sp.) and julidans (Ommatoiulus moreletii). In general, plants excluded from pollinators set less fruits than open-pollination (control) plants which set fruits homogeneously across sections. Diurnally pollinated plants set more fruit in their upper parts whereas nocturnally pollinated plants set fruit in both upper and bottom sections. We conclude that although the frequency and diversity of diurnal pollinators is far higher than that of nocturnal pollinators, both exhibit different foraging behaviour that generates complementary effects on the reproductive success of E. simplex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baker HG (1961) The adaptation of flowering plants to nocturnal and crepuscular pollinators. Q Rev Biol 36:64–73

    Google Scholar 

  • Berry PE, Calvo RN (1991) Pollinator limitation and position dependent fruit set in the high Andean orchid Myrosmodes cochleare (Orchidaceae). Plant Syst Evol 174:93–101

    Google Scholar 

  • Bertin RI, Willson MF (1980) Effectiveness of diurnal and nocturnal pollination of two milkweeds. Can J Bot 58:1744–1746

    Google Scholar 

  • Borges RM, Somanathan H, Kelber A (2016) Patterns and processes in nocturnal and crepuscular pollination services. Q Rev Biol 91:389–418

    PubMed  Google Scholar 

  • Brantjes NBM, Leemans JAAM (1976) Silene otites (Caryophyllaceae) pollinated by nocturnal lepidoptera and mosquitoes. Acta Bot Neerl 25:281–295

    Google Scholar 

  • Brown BJ, Mitchell RJ (2001) Competition for pollination: effects of pollen of an invasive plant on seed set of a native congener. Oecologia 129:43–49

    PubMed  Google Scholar 

  • Byrne M, Mazer SJ (1990) The effect of position on fruit and of yield in relationships among components of yield in Phytolacca rivinoides (Phytolaccaceae). Biotropica 22:353–365

    Google Scholar 

  • Cordeiro GD, Pinheiro M, Dötterl S, Alves-dos-Santos I (2017) Pollination of Campomanesia phaea (Myrtaceae) by night-active bees: a new nocturnal pollination system mediated by floral scent. Plant Biol 19:132–139

    CAS  PubMed  Google Scholar 

  • Crocker W (1906) Role of seed coats in delayed germination. Contributions from the Hull Botanical Laboratory. LXXXV Bot Gaz 42:265–291

    Google Scholar 

  • Crumb SE, Eide PM, Bonn AE (1941) The European earwig. USDA Tech Bull 766:76

    Google Scholar 

  • Diggle PK (1995) Architectural effects and the interpretation of patterns of fruit and seed development. Annu Rev Ecol Syst 26:531–552

    Google Scholar 

  • Ehrlén J (1992) Proximate limits to seed production in a herbaceous perennial legume, Lathyrus vernus. Ecology 73:1820–1831

    Google Scholar 

  • Ehrlén J (1993) Ultimate functions of non-fruiting flowers in Lathyrus vernus. Oikos 68:45–52

    Google Scholar 

  • Elam DR, Linhart YB (1988) Pollination and seed production in Ipomopsis aggregata: differences among and within Flower color morphs. Am J Bot 75:1262–1274

    Google Scholar 

  • Faegri K, van der Pijl L (1966) The principles of pollination ecology. Pergamon Press, Oxford

    Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P et al (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403

    Google Scholar 

  • Ghazoul J (1997) The pollination and breeding system of Dipterocarpus obtusifolius (Dipterocarpaceae) in dry deciduous forests of Thailand. J Nat Hist 31:901–916

    Google Scholar 

  • Goldingay RL, Whelan RJ (1993) The influence of pollinators on fruit positioning in the Australian shrub Telopea speciosissima (Proteaceae). Oikos 68:501–509

    Google Scholar 

  • Groman JD, Pellmyr O (1999) The pollination biology of Manfreda virginica (Agavaceae): relative contribution of diurnal and nocturnal visitors. Oikos 87:373

    Google Scholar 

  • Guillou H, Carracedo JC, Paris R, Torrado FJP (2004) Implications for the early shield-stage evolution of Tenerife from K/Ar ages and magnetic stratigraphy. Earth Planet Sci Lett 222:599–614

    CAS  Google Scholar 

  • Guitian J (1994) Selective fruit abortion in Prunus mahaleb (Rosaceae). Am J Bot 81:1555–1558

    Google Scholar 

  • Guitián J, Navarro L (1996) Allocation of reproductive resources within inflorescences of Petrocoptis grandiflora (Caryophyllaceae). Can J Bot 74:1482–1486

    Google Scholar 

  • Guitian P, Guitian J, Navarro L (1993) Pollen transfer and diurnal versus nocturnal pollination in Lonicera etrusca. Acta Oecol 14:219–227

    Google Scholar 

  • Haber WA, Frankie GW (1989) A tropical hawkmoth community: Costa Rican dry forest sphingidae. Biotropica 21:155–172

    Google Scholar 

  • Herrera J (1991) Allocation of reproductive resources within and among inflorescences of Lavandula stoechas (Lamiaceae). Am J Bot 78:789–794

    Google Scholar 

  • Jaca J, Nogales M, Traveset A (2019) Reproductive success of the Canarian Echium simplex (Boraginaceae) mediated by vertebrates and insects. Plant Biol 21:216–226

    CAS  PubMed  Google Scholar 

  • Jennersten O (1988) Pollination of Viscaria vulgaris (Caryophyllaceae): the contributions of diurnal and nocturnal insects to seed set and seed predation. Oikos 52:319–327

    Google Scholar 

  • Jennersten O, Morse DH (1991) The quality of pollination by diurnal and nocturnal insects visiting common milkweed, Asclepias syriaca. Am Midl Nat 125:18–28

    Google Scholar 

  • Jürgens A, Witt T, Gottsberger G (1996) Reproduction and pollination in Central European populations of Silene and Saponaria species. Bot Acta 109:316–324

    Google Scholar 

  • Jürgens A, Witt T, Gottsberger G (2002) Flower scent composition in night-flowering Silene species (Caryophyllaceae). Biochem Syst Ecol 30:383–397

    Google Scholar 

  • Karoly K (1992) Pollinator limitation in the facultatively autogamous annual, Lupinus nanus (Leguminosae). Am J Bot 79:49–56

    Google Scholar 

  • Kevan PG, Baker HG (1983) Insects as flower visitors and pollinators. Annu Rev Entomol 28:407–453

    Google Scholar 

  • Kikuzawa K (1989) Floral biology and evolution of gynodioecism in Daphne kamtchatica var. jezoensis. Oikos 56:196

    Google Scholar 

  • Klein AM, Hendrix SD, Clough Y et al (2015) Interacting effects of pollination, water and nutrients on fruit tree performance. Plant Biol 17:201–208

    PubMed  Google Scholar 

  • Knop E, Zoller L, Ryser R et al (2017) Artificial light at night as a new threat to pollination. Nature 548:206–209

    CAS  PubMed  Google Scholar 

  • Kudo G, Maeda T, Narita K (2001) Variation in floral sex allocation and reproductive success within inflorescences of Corydalis ambigua (Fumariaceae): pollination efficiency of resource limitation? J Ecol 89:48–56

    Google Scholar 

  • Lee TL (1988) Patterns of fruit and seed production. In: Lovett Doust J, Lovett Doust L (eds) Plant reproductive ecology: patterns and strategies. Oxford University Press, New York, pp 179–202

    Google Scholar 

  • Lortie CJ, Aarssen LW (1999) The advantage of being tall: higher flowers receive more pollen in Verbascum thapsus L. (Scrophulariaceae). Ecoscience 6:68–71

    Google Scholar 

  • Lunau K, Maier EJ (1995) Innate colour preferences of flower visitors. J Comp Physiol A 177:1–19

    Google Scholar 

  • Macgregor CJ, Kitson JJN, Fox R et al (2018) Construction, validation, and application of nocturnal pollen transport networks in an agro-ecosystem: a comparison using light microscopy and DNA metabarcoding. Ecol Entomol 44:17–29

    Google Scholar 

  • Martinell CC, Dötterl S, Blanché C et al (2010) Nocturnal pollination of the endemic Silene sennenii (Caryophyllaceae): an endangered mutualism? Plant Ecol 211:203–218

    Google Scholar 

  • McMullen CK (2009) Pollination biology of a night-flowering Galápagos endemic, Ipomoea habeliana (Convolvulaceae). Bot J Linn Soc 160:11–20

    Google Scholar 

  • Miyoshi K, Mii M (1988) Ultrasonic treatment for enhancing seed germination of terrestrial orchid, Calanthe discolor, in asymbiotic culture. Sci Hortic (Amsterdam) 35:127–130

    Google Scholar 

  • Moreno JC (2008) Lista Roja 2008 de la Flora Vascular Española. Dirección General de Medio Natural y Política Forestal (Ministerio de Medio Ambiente, y Medio Rural y Marino, y Sociedad Española de Biología de la Conservación de Plantas), Madrid, Spain

  • Morse DH, Fritz RS (1983) Contributions of diurnal and nocturnal insects to the pollination of common milkweed (Asclepias syriaca L.) in a pollen-limited system. Oecologia 60:190–197

    PubMed  Google Scholar 

  • Nassar JM, Ramírez N, Linares O (1997) Comparative pollination biology of Venezuelan columnar cacti and the role of nectar-feeding bats in their sexual reproduction. Am J Bot 84:918–927

    CAS  PubMed  Google Scholar 

  • Navarro L (1996) Fruit-set and seed weight variation in Anthyllis vulneraria subsp. vulgaris (Fabaceae). Plant Syst Evol 201:139–148

    Google Scholar 

  • Navarro L (1999) Pollination ecology and effect of nectar removal in Macleania bullata (Ericaceae). Biotropica 31:618–625

    Google Scholar 

  • Navarro L, Guitián J (2002) The role of floral biology and breeding system on the reproductive success of the narrow endemic Petrocoptis viscosa rothm. (Caryophyllaceae). Biol Conserv 103:125–132

    Google Scholar 

  • Paolini R, Bàrberi P, Rocchi C (2001) The effect of seed mass, seed colour, pre-chilling and light on the germination of Sinapis arvensis L. Ital J Agron 5:39–46

    Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing

  • Raguso RA (2008) Wake up and smell the roses: the ecology and evolution of floral scent. Annu Rev Ecol Evol Syst 39:549–569

    Google Scholar 

  • Reynolds RJ, Westbrook MJ, Rohde AS et al (2009) Pollinator specialization and pollination syndromes of three related North American Silene. Ecology 90:2077–2087

    PubMed  Google Scholar 

  • Roubik DW, Ackerman JD, Copenhaver C, Smith BH (1982) Stratum, tree, and flower selection by tropical bees: implications for the reproductive biology of outcrossing Cochlospermum vitifolium in Panama. Ecology 63:712–720

    Google Scholar 

  • Sahley CT (1996) Bat and hummingbird pollination of an autotetraploid columnar cactus, Weberbauerocereus weberbaueri (Cactaceae). Am J Bot 83:1329–1336

    Google Scholar 

  • Schemske DW (1983) Breeding system and habitat effects on fitness components in three Neotropical Costus (Zingiberaceae). Evolution (N Y) 37:523–539

    Google Scholar 

  • Schemske DW, Horvitz CC (1984) Variation among floral visitors in pollination ability: a precondition for mutualism specialization. Science 225:519–521

    CAS  PubMed  Google Scholar 

  • Schneemilch M, Williams C, Kokkinn M (2011) Floral visitation in the Australian native shrub genus Acrotriche R.Br (Ericaceae): an abundance of ants (Formicidae). Aust J Entomol 50:130–138

    Google Scholar 

  • Solomon BP (1988) Patterns of pre- and postfertilization resource allocation within an inflorescence: evidence for interovary competition. Am J Bot 75:1074–1079

    Google Scholar 

  • Stephenson AG (1981) Flower and fruit abortion: proximate causes and ultimate functions. Annu Rev Ecol Syst 12:253–279

    Google Scholar 

  • Stephenson AG, Thomas WW (1977) Diurnal and nocturnal pollination of Catalpa speciosa (Bignoniaceae). Syst Bot 2:191–198

    Google Scholar 

  • Stöcklin J, Lenzin H (2013) Echium simplex, ein seltener Schopfrosettenbaum auf Teneriffa. Bauhinia 24:23–37

    Google Scholar 

  • Sutherland S (1987) Why hermaphroditic plants produce many more flowers than fruits: experimental tests with Agave mackelveyana. Evolution (NY) 41:750–759

    Google Scholar 

  • Thien LB (1980) Patterns of pollination in the primitive angiosperms. Biotropica 12:1–13

    Google Scholar 

  • Thomson JD (1989a) Deployment of ovules and pollen among flowers within inflorescences. Evol Trends Plants 3:65–68

    Google Scholar 

  • Thomson JD (1989b) Germination schedules of pollen grains: implications for pollen selection. Evolution (N Y) 43:220–223

    Google Scholar 

  • Thompson JN, Pellmyr O (1992) Mutualism with pollinating seed parasites amid co-pollinators: constraints on specialization. Ecology 73:1780–1791

    Google Scholar 

  • Torices R, Méndez M (2010) Fruit size decline from the margin to the center of capitula is the result of resource competition and architectural constraints. Oecologia 164:949–958

    PubMed  Google Scholar 

  • Tremblay RL (2006) The effect of flower position on male and female reproductive success in a deceptively pollinated tropical orchid. Bot J Linn Soc 151:405–410

    Google Scholar 

  • Udovic D, Aker C (1981) Fruit abortion and the regulation of fruit number in Yucca whipplei. Oecologia 49:245–248

    PubMed  Google Scholar 

  • Vallius E (2000) Position-dependent reproductive success of flowers in Dactylorhiza maculata (Orchidaceae). Funct Ecol 14:573–579

    Google Scholar 

  • Van Doorn WG, Van Meeteren U (2003) Flower opening and closure: a review. J Exp Bot 54:1801–1812

    PubMed  Google Scholar 

  • von Helversen O, Winter Y (2003) Glossophagine bats and their flowers: costs and benefits for plant and pollinators. In: Kunz TH, Fenton MB (eds) Bat ecology. The University of Chicago Press, Chicago, pp 346–397

    Google Scholar 

  • Waser NM (1982) A comparison of distances flown by different visitors to flowers of the same species. Oecologia 55:251–257

    PubMed  Google Scholar 

  • Waser NM, Chittka L, Price MV et al (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060

    Google Scholar 

  • Wyatt R (1982) Inflorescence architecture: how flower number, arrangement, and phenology affect pollination and fruit-set. Am J Bot 69:585–594

    Google Scholar 

  • Young HJ (2002) Diurnal and nocturnal pollination of Silene alba (Caryophyllaceae). Am J Bot 89:433–440

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Marcos Báez and Antonio Pérez Delgado for insect identification, Benito Pérez Vispo for his technical assistance in the field, and Juana Pérez López for providing logistical support in Chamorga. We are also grateful to Servicio Administrativo de Medio Ambiente, Excmo. Cabildo Insular de Tenerife for permission (2016-01704) to work in Anaga Biosphere Reserve, Tenerife. The company Tagoro Medioambiente provided its greenhouse to perform the seedling emergence experiments; Manuel Martín helped us in the follow-up of the experiment. Julia Jaca was funded by a predoctoral fellowship from the Ministerio de Educación, Cultura y Deporte (FPU13/05880) and by the unemployment benefit from the Ministerio de Trabajo, Migraciones y Seguridad Social. The study was framed within a project financed by the Ministerio de Economía, Industria y Competitividad (CGL2017-88122-P) to Anna Traveset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Jaca.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Christina Mogren.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaca, J., Nogales, M. & Traveset, A. Effect of diurnal vs. nocturnal pollinators and flower position on the reproductive success of Echium simplex. Arthropod-Plant Interactions 14, 409–419 (2020). https://doi.org/10.1007/s11829-020-09759-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-020-09759-4

Keywords

Navigation