Skip to main content

Advertisement

Log in

Not all in the same boat: trends and mechanisms in herbivory responses to forest fragmentation differ among insect guilds

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Habitat fragmentation can alter fundamental ecological interactions such as insect herbivory. Few studies of habitat fragmentation effects on herbivory have examined the mechanisms involved, and differences among insect guilds have been largely ignored. Here, we studied area and edge effects on herbivory by three guilds of phytophagous insects in a fragmented Chaco Serrano forest. We estimated herbivory levels on native Croton lachnostachyus plants and assessed plant availability (distance to nearest conspecific) and quality indicators (leaf water, carbon and nitrogen content), as well as richness and abundance of the associated insect community, in order to explore mechanisms underlying herbivory changes. Herbivory by chewing and sap-sucking insects decreased, and herbivory by leaf miners increased in plants growing at the forest edge, compared with those at the interior. Forest area effects were detected only in interaction with edge effects on chewing, leaf mining and total herbivory. Lower herbivory at the edge appeared to be mediated by changes in leaf water and nitrogen content for sap-sucking herbivory, and linked to strong direct effects for chewing damage and total herbivory. Instead, higher damage levels by leaf miners at the forest edge seemed to be driven by increased plant availability and lower water content. Further studies are needed to unravel the factors involved in the strong direct effects detected here for all herbivory types. These results emphasize the necessity to consider differential responses from diverse phytophagous insect guilds, and factors operating at multiple levels, in order to disentangle, and ultimately understand, forest fragmentation effects on herbivory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilar R, Ashworth L, Cagnolo L, Jausoro M, Quesada M, Galetto L (2009) Dinámica de interacciones mutualistas y antagonistas en ambientes fragmentados. In: Medel R, Aizen MA, Zamora R (eds) Ecología y evolución de interacciones animal–planta: conceptos y aplicaciones, Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Cooperación Iberoamericana. Editorial Universitaria de Chile, Santiago, pp 119–230

    Google Scholar 

  • Aide TM, Zimmerman JK (1990) Patterns of insect herbivory, growth, and survivorship in juveniles of a Neotropical liana. Ecology 71:1412–1421

    Article  Google Scholar 

  • Aide TM, Matthew LC, Grau HR et al (2012) Deforestation and reforestation of Latin America and the Caribbean (2001–2010). Biotropica 45:262–271

  • Allan E, Crawley MJ (2011) Contrasting effects of insect and molluscan herbivores on plant diversity in a long-term field experiment. Ecol Lett 14:1246–1253

    Article  PubMed  Google Scholar 

  • Andrew NR, Hughes L (2005) Herbivore damage along a latitudinal gradient: relative impacts of different feeding guilds. Oikos 1:176–182

    Article  Google Scholar 

  • Arnold AE, Asquith NM (2002) Herbivory in a fragmented tropical forest: patterns from islands at Lago Gatún, Panama. Biodivers Conserv 11:1663–1680

    Article  Google Scholar 

  • Arnold AE, Fonseca CR (2011) Herbivory, pathogens, and epiphylls in Araucaria Forest and ecologically-managed tree monocultures. For Ecol Manag 262:1041–1046

    Article  Google Scholar 

  • Ashworth L, Martí ML (2011) forest fragmentation and seed germination of native species from the Chaco Serrano Forest. Biotropica 43:496–503

    Article  Google Scholar 

  • Barbosa VS, Leal IR, Iannuzzi L, Almeida-Cortez J (2005) distribution pattern of herbivorous insects in a remnant of Brazilian Atlantic Forest. Neotrop Entomol 34:701–711

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B (2011) lme4: linear mixed effects models using S4 classes. R package version 0.999375-39. http://cran.r-project.org/web/packages/lme4/index.html

  • Boege K, Marquis RJ (2005) Facing herbivory as you grow up: the ontogeny of resistance in plants. Trends Ecol Evol 20:441–448

    Article  PubMed  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ et al (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Cabrera C (2011) La herbivoría por insectos en remanentes de Bosque Chaqueño Serrano fragmentado en el centro de Argentina. Under graduate thesis, Universidad Nacional de Córdoba, Argentina

  • Cagnolo L, Cabido M, Valladares G (2006) Plant species richness in the Chaco Serrano Woodland from central Argentina: ecological traits and hábitat fragmentation effects. Biol Conserv 132:510–519

    Article  Google Scholar 

  • Cagnolo L, Valladares G, Salvo A et al (2009) Habitat fragmentation and species loss across three interacting trophic levels: effects of life-history and food-web traits. Conserv Biol 23:1167–1175

    Article  PubMed  Google Scholar 

  • Chen JQ, Franklin JF, Spies TA (1993) Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest. Agric For Meteorol 63:219–237

    Article  Google Scholar 

  • Chen JQ, Franklin JF, Spies TA (1995) Growing-season microclimatic gradients from clear-cut edges into old-growth Douglas-Fir forests. Ecol Appl 5:74–86

    Article  Google Scholar 

  • Christianini AV, Oliveira PS (2013) Edge effects decrease ant-derived benefits to seedlings in a neotropical savanna. Arthropod Plant Interact 7:191–199

    Article  Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol Syst 27:305–335

    Article  Google Scholar 

  • Connor EF, McCoy ED (2001) Species–area relationships. Encycl Biodivers 5:397–411

    Article  Google Scholar 

  • Crawley MJ (1989) Insect herbivores and plant population dynamics. Annu Rev Entomol 34:531–564

    Article  Google Scholar 

  • Cunningham SA, Bryan Summerhayes MW, Westoby M (1999) Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol Entomol 69:569–588

    Google Scholar 

  • Davies-Colley RJ, Payne GW, van Elswijk M (2000) Microclimate gradients across a forest edge. NZ J Ecol 24:111–121

    Google Scholar 

  • De la Vega X, Grez AA (2008) Composición, riqueza de especies y abundancia de insectos defoliadores de actividad nocturna asociados a Aristotelia chilensis (maqui) en el bosque maulino fragmentado. Rev Chil Hist Nat 81:221–238

    Google Scholar 

  • De la Vega X, Grez AA, Simonetti JA (2012) Is top-down control by predators driving insect abundance and herbivory rates in fragmented forests? Austral Ecol 37:836–844

    Article  Google Scholar 

  • Didham RK (2010) Ecological consequences of habitat fragmentation. Encyclopedia of life sciences (ELS). Wiley, Chichester

    Google Scholar 

  • Didham RK, Kapos V, Ewers RM (2012) Rethinking the conceptual foundations of habitat fragmentation research. Oikos 121:161–170

    Article  Google Scholar 

  • Elzinga JA, Turin H, van Damme JMM, Biere A (2005) Plant population size and isolation affect herbivory of Silenelatifolia by the specialist herbivore Hadena bicruris and parasitism of the herbivore by parasitoids. Oecologia 144:416–426

    Article  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Faraway JJ (2006) Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models. CRC, Boca Raton

    Google Scholar 

  • Fáveri SB, Vasconcelos HL, Dirzo R (2008) Effects of Amazonian forest fragmentation on the interaction between plants, insect herbivores, and their natural enemies. J Trop Ecol 24:57–64

    Article  Google Scholar 

  • Fletcher JR Jr, Ries L, Battin J, Chalfoun AD (2007) The role of habitat area and edge in fragmented landscapes: definitively distinct or inevitably intertwined? Can J Zool 85:1017–1030

    Article  Google Scholar 

  • Gallardo A, Merino J (1993) Leaf decomposition in two Mediterranean ecosystems of Southwest Spain—influence of substrate quality. Ecology 74:152–161

    Article  Google Scholar 

  • Golden DM, Crist TO (1999) Experimental effects of habitat fragmentation on old-field canopy insects: community, guild and species responses. Oecologia 118:371–380

    Article  Google Scholar 

  • González E, Salvo A, Valladares G (2014) Arthropods on plants in a fragmented Neotropical dry forest: a functional analysis of habitat loss and edge effects. Insect Sci. doi:10.1111/1744-7917.12107

    PubMed  Google Scholar 

  • Hagen M, Kissling WD, Rasmussen C et al (2012) Biodiversity, species interactions and ecological networks in a fragmented world. Adv Ecol Res 46:89–120

    Article  Google Scholar 

  • Haynes KJ, Crist TO (2009) Insect herbivory in an experimental agroecosystem: the relative importance of habitat area, fragmentation, and the matrix. Oikos 118:1477–1486

    Article  Google Scholar 

  • Huberty AF, Denno RF (2004) Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85:1383–1398

    Article  Google Scholar 

  • Ishino MN, De Sibio PR, Rossi MN (2012) Edge effect and phenology in Erythroxylum tortuosum (Erythroxylaceae), a typical plant of the Brazilian Cerrado. Braz J Biol 72:587–594

    Article  CAS  PubMed  Google Scholar 

  • Junior WCJ, Júnior JB, Amorim L et al (2006) Injuries caused by citrus leaf miner (Phyllocnistis citrella) exacerbate citrus canker (Xanthomonas axonopodispv. citri) infection. Fitopatol Bras 31:277–283

    Article  Google Scholar 

  • Klapwijk MJ, Lewis OT (2012) Host–parasitoid dynamics in a fragmented landscape: holly trees, holly leaf miners and their parasitoids. Basic Appl Ecol 13:94–105

    Article  Google Scholar 

  • Kluth S, Kruess A, Tscharntke T (2002) Insects as vectors of plant pathogens: mutualistic and antagonistic interactions. Oecologia 133:193–199

    Article  Google Scholar 

  • Kogan M, Herzog DC (1979) Sampling methods in soybean entomology. Springer, New York

    Google Scholar 

  • Koh LP, Lee TM, Sodhi NS, Ghazoul J (2010) An overhaul of the species-area approach for predicting biodiversity loss: incorporating matrix and edge effects. J Appl Ecol 47:1063–1070

    Article  Google Scholar 

  • Kondoh M (2003) Habitat fragmentation resulting in overgrazing by herbivores. J Theor Biol 225:456–460

    Article  Google Scholar 

  • Krauss J, Bommarco R, Guardiola M et al (2010) Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol Lett 13:597–605

    Article  PubMed Central  PubMed  Google Scholar 

  • Kruess A, Tscharntke T (1994) Habitat fragmentation, species loss, and biological control. Science 264:1581–1584

    Article  CAS  PubMed  Google Scholar 

  • Kruess A, Tscharntke T (2000) Species richness and parasitism in a fragmented landscape: experiments and field studies with insects on Vicia sepium. Oecologia 122:129–137

    Article  Google Scholar 

  • Laurance WF, Delamônica P, Laurance SG et al (2000) Rainforest fragmentation kills big trees. Nature 404:836

    Article  CAS  PubMed  Google Scholar 

  • Laurance WF, Nascimento HEM, Laurance SG et al (2007) Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS One 10:1–8

    Google Scholar 

  • Ledergerber S, Dolt C, Zschokke S, Baur B (2002) Effects of experimental small-scale grassland fragmentation on the extent of grazing damage in Trifolium repens seedlings. Acta Oecol 23:329–336

    Article  Google Scholar 

  • Leimu R, Vergeer P, Angeloni F, Ouborg NJ (2010) Habitat fragmentation, climate change, and inbreeding in plants. Ann NY Acad Sci 1195:84–98

    Article  PubMed  Google Scholar 

  • Lienert J, Fischer M (2003) Habitat fragmentation affects the common wetland specialist Primula farinosa in north-east Switzerland. J Ecol 91:587–599

    Article  Google Scholar 

  • Lienert J, Diemer M, Schmid B (2002) Effects of habitat fragmentation on population structure and fitness components of the wetland specialist Swertia perennis L. (Gentianaceae). Basic Appl Ecol 3:101–114

    Article  Google Scholar 

  • Lomelí-Flores JR, Barrera JF, Bernal JS (2010) Impacts of weather, shade cover and elevation on coffee leafminer Leucoptera coffeella (Lepidoptera: Lyonetiidae) population dynamics and natural enemies. Crop Prot 29:1039–1048

    Article  Google Scholar 

  • Marini L, Bruun HH, Heikkinen RK et al (2012) Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss. Divers Distrib 18:898–908

    Article  Google Scholar 

  • Meyer ST, Roces F, Wirth R (2006) Selecting the drought stressed: effects of plant stress on intraspecific and within-plant herbivory patterns of the leaf-cutting ant Atta colombica. Funct Ecol 20:973–981

    Article  Google Scholar 

  • Moglia G, Giménez AM (1998) Rasgos anatómicos característicos del hidrosistema de las principales especies arbóreas de la región chaqueña argentina. Rev Invest Agr Sist Rec Forest 7:53–71

    Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forest: implications for conservation. Tree 10:58–62

    CAS  PubMed  Google Scholar 

  • Novotny V, Miller SE, Hrcek J et al (2012) Insects on plants: explaining the paradox of low diversity within specialist herbivore guilds. Am Nat 179:351–362

    Article  PubMed  Google Scholar 

  • Olff H, Ritchie ME (1998) Effects of herbivores on grassland plant diversity. Tree 13:261–265

    CAS  PubMed  Google Scholar 

  • Peeters PJ, Sanson G, Read J (2007) Leaf biochemical properties and the densities of herbivorous insect guilds. Funct Ecol 21:246–255

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, the R Development Core Team (2013) nlme: linear and nonlinear mixed effects models. R package version 3.1-109. http://cran.r-project.org/web/packages/nlme/index.html

  • Piotti A (2009) The genetic consequences of habitat fragmentation: the case of forests. iForest 2:75–76

    Article  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R foundation for statistical computing. http://www.rproject.org

  • Repetto-Giavelli F, Cavieres LA (2007) Respuestas foliares de Aristotelia chilensis (Molina) Stuntz (Elaeocarpaceae) a la fragmentación del bosque maulino. Rev Chil Hist Nat 80:469–477

    Article  Google Scholar 

  • Roberts MR, Paul ND (2006) Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defence against pests and pathogens. New Phytol 170:677–699

    Article  CAS  PubMed  Google Scholar 

  • Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124

    Article  Google Scholar 

  • Ruiz-Guerra B, Guevara R, Mariano NA, Dirzo R (2010) Insect herbivory declines with forest fragmentation and covaries with plant regeneration mode: evidence from a Mexican tropical rain forest. Oikos 119:317–325

    Article  Google Scholar 

  • Rybicki J, Hanski I (2013) Species–area relationships and extinctions caused by habitat loss and fragmentation. Ecol Lett 16:27–38

  • Savilaakso S, Koivisto J, Veteli TO, Roininen H (2009) Microclimate and tree community linked to differences in lepidopteran larval communities between forest fragments and continuous forest. Divers Distrib 15:356–365

    Article  Google Scholar 

  • Schnitzler F-R, Hartley S, Lester PJ (2011) Trophic-level responses differ at plant, plot, and fragment levels in urban native forest fragments: a hierarchical analysis. Ecol Entomol 36:241–250

    Article  Google Scholar 

  • Schoonhoven LM, Loon JV, Dicke M (2005) Insect–plant biology, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Schowalter TD (2000) Insect ecology: an ecosystem approach. Academic Press, San Diego

    Google Scholar 

  • Sechrest WW, Brooks TM (2002) Biodiversity-Threats. eLS

  • Sérsic A, Cocucci A, Benítez Vieyra S et al (2006) Flores del Centro de Argentina. Una guía ilustrada para conocer 141 especies típicas. Academia Nacional de Ciencias, Córdoba

    Google Scholar 

  • Shipley B (2000) Cause and correlation in biology: a user’s guide to path analysis, structural equations and causal inference. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Silva CA, Simonetti JA (2009) Inquiring into the causes of depressed folivory in a fragmented temperate forest. Acta Oecol 35:458–461

    Article  Google Scholar 

  • Simonetti J, Grez A, Celisdiez J, Bustamante R (2007) Herbivory and seedling performance in a fragmented temperate forest of Chile. Acta Oecol 32:312–318

    Article  Google Scholar 

  • Skoczylas DR, Muth NZ, Niesenbaum RA (2007) Contribution of insectivorous avifauna to top down control of Lindera benzoin herbivores at forest edge and interior habitats. Acta Oecol Int J Ecol 32:337–342

    Article  Google Scholar 

  • Smith DM, Nufio CR (2004) Levels of herbivory in two Costa Rican rain forests: implications for studies of fossil herbivory. Biotropica 36:318–326

    Google Scholar 

  • Souza DG, Santos BA, Wirth R et al (2013) Community-level patterns of insect herbivory in a fragmented Atlantic forest landscape. Environ Entomol 42:430–437

    Article  PubMed  Google Scholar 

  • Srivastava DS, Trzcinski MK, Richardson BA, Gilbert B (2008) Why are predators more sensitive to habitat size than their prey? Insights from bromeliad insect food webs. Am Nat 172:761–771

    Article  CAS  PubMed  Google Scholar 

  • Thies C, Steffan-Dewenter I, Tscharntke T (2003) Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 101:18–25

    Article  Google Scholar 

  • Triplehorn CA, Johnson NF, Triplehorn CAJ (2005) Borror and DeLong’s introduction to the study of insects. Thomson Brooks/Cole, Belmont, CA

  • Tscharntke T, Brandl R (2004) Plant–insect interactions in fragmented landscapes. Annu Rev Entomol 49:405–430

    Article  CAS  PubMed  Google Scholar 

  • Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Characteristics of insect populations on habitat fragments: a mini review. Ecol Res 17:229–239

    Article  Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA et al (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685

    Article  PubMed  Google Scholar 

  • Ullman JB (2006) Structural equation modeling: reviewing the basics and moving forward. J Pers Assess 87:35–50

    Article  PubMed  Google Scholar 

  • Valdivia C (2011) Negative effects of forest fragmentation and proximity to edges on pollination and herbivory of Bomarea salsilla (Alstroemeriaceae). Plant Ecol Evol 144:281–287

    Article  Google Scholar 

  • Valladares G, Salvo A, Cagnolo L (2006) Habitat fragmentation effects on trophic processes of insect-plant food webs. Conserv Biol 20:212–217

    Article  PubMed  Google Scholar 

  • Valladares G, Cagnolo L, Salvo A (2012) Forest fragmentation leads to food web contraction. Oikos 121:299–305

    Article  Google Scholar 

  • Van Nouhuys S (2005) Effects of habitat fragmentation at different trophic levels in insect communities. Annu Zol Fenn 42:433–447

  • Vasconcelos HL, Bruna EM (2012) Arthropod responses to the experimental isolation of Amazonian forest fragments. Zoologia 29:515–530

    Article  Google Scholar 

  • Vásquez PA, Grez AA, Bustamante RO, Simonetti JA (2007) Herbivory, foliar survival and shoot growth in fragmented populations of Aristotelia chilensis. Acta Oecol 31:48–53

    Article  Google Scholar 

  • Vranckx G, Jacquemyn H, Muys B, Honnay O (2012) Meta-analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation. Conserv Biol 26:228–237

    Article  PubMed  Google Scholar 

  • Wagner D, DeFoliart L, Doak P, Schneiderheinze J (2008) Impact of epidermal leaf mining by the aspen leaf miner (Phyllocnistis populiella) on the growth, physiology, and leaf longevity of quaking aspen. Oecologia 157:259–267

    Article  PubMed  Google Scholar 

  • Whitfeld TJS, Novotny V, Miller GD et al (2012) Predicting tropical insect herbivore abundance from host plant traits and phylogeny. Ecology 93:S211–S223

    Article  Google Scholar 

  • Wilby A, Thomas MB (2002) Are the ecological concepts of assembly and function of biodiversity useful frameworks for understanding natural pest control? Agric For Entomol 4:237–243

    Article  Google Scholar 

  • Wirth R, Meyer ST, Leal IR, Tabarelli M (2008) Plant–herbivore interactions at the forest edge. In: Lüttge U, Beyschlag W, Murata J (eds) Progress in botany, vol 69. Springer, Berlin, pp 420–436

    Chapter  Google Scholar 

  • Woodcock BA, Vanbergen AJ (2008) Parasitism of the beech leaf-miner weevil in a woodland: patch size, edge effects and parasitoid species identity. Insect Conserv Divers 1:180–188

    Article  Google Scholar 

  • Zak MR, Cabido M, Hodgson JG (2004) Do subtropical seasonal forests in the Gran Chaco, Argentina, have a future? Biol Conserv 120:589–598

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ et al (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

  • Zvereva EL, Lanta V, Kozlov MV (2010) Effects of sap-feeding insect herbivores on growth and reproduction of woody plants: a meta-analysis of experimental studies. Oecologia 163:949–960

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors wish to acknowledge the assistance of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Universidad Nacional de Córdoba, both of which support facilities used in this investigation; we also thank landowners (Estancia Santo Domingo) for giving us access to forest remnants. Special thanks to Maria Silvina Fenoglio for statistical assistance. We are thankful to two anonymous reviewers for their helpful comments and suggestions. This research was supported by FONCYT, CONICET, and SECYT-UNC. G.V. and A.S. are research members and M.R.R. and E.G. are grant students of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Rosa Rossetti.

Additional information

Handling Editor: Heikki Hokkanen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossetti, M.R., González, E., Salvo, A. et al. Not all in the same boat: trends and mechanisms in herbivory responses to forest fragmentation differ among insect guilds. Arthropod-Plant Interactions 8, 593–603 (2014). https://doi.org/10.1007/s11829-014-9342-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-014-9342-z

Keywords

Navigation