Skip to main content

Advertisement

Log in

The future is now: revolution of RNA-mediated gene silencing in plant protection against insect pests and diseases

  • Review
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

The global agricultural direct yield loss is estimated up to 40% and minimizing such loss is therefore crucial for future sustainability of global crop production. The discovery of RNA-mediated gene silencing mechanism has improved our understanding on gene expression and their regulation. The mechanism was later found applicable for controlling various plant pathogens. Recent discoveries indicated that plant small RNAs are involved in plant defence not only against viruses but also extended to other pathogens, such as insect pests and fungi. This finding showed that RNA-mediated gene silencing is a conserved strategy employed by plant as a defence mechanism and will boost the application of RNA-mediated gene silencing to improve crop resistance against various pests and diseases. This review provided summaries of the application of RNA-mediated gene silencing in the plant protection against various pests and diseases including from nematodes, insects, fungi, and viruses. The strategies used and significant findings were also discussed and this information can be considered for future planning of similar study. This review also provided the latest trends and potential applications of dsRNA via non-transgenic approach to control pests and diseases, namely spray-induced gene silencing. The advantages and disadvantages of application of RNA-mediated gene silencing in plant protection via transgenic and non-transgenic approaches were also discussed. The application of RNA-mediated gene silencing could offer a promising solution for plant protection against pests and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbas MST (2018) Genetically engineered (modified) crops (Bacillus thuringiensis crops) and the world controversy on their safety. Egypt J Biol Pest Control 28:52

    Google Scholar 

  • Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the Tobacco Mosaic Virus coat protein gene. Science 232:738–743

    CAS  PubMed  Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12

    PubMed  PubMed Central  Google Scholar 

  • Alakonya A, Kumar R, Koenig D, Kimura S, Townsley B, Runo S, Garces HM, Kang J, Yanez A, David-Schwartz R, Machuka J, Sinha N (2012) Interspecific RNA interference of shoot meristemless-like disrupts Cuscuta pentagona plant parasitism. Plant Cell 24:3153–3166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP, Lemaux PG, Medford JI, Orozco-Cárdenas ML, Tricoli DM, Van Eck J, Voytas DF, Walbot V, Wang K, Zhang ZJ, Stewart CN Jr (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28(7):1510–1520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aly R, Cholakh H, Joel DM, Leibman D, Steinitz B, Zelcer A, Naglis A, Yarden O, Gal-On A (2009) Gene silencing of mannose 6-phosphate reductase in the parasitic weed Orobanche aegyptiaca through the production of homologous dsRNA sequences in the host plant. Plant Biotechnol J 7:487–498

    CAS  PubMed  Google Scholar 

  • Ammara U, Mansoor S, Saeed M, Amin I, Briddon RW, Al-Sadi AM (2015) RNA interference-based resistance in transgenic tomato plants against Tomato yellow leaf curl virus-Oman (TYLCV-OM) and its associated betasatellite. Virol J 4(12):38

    Google Scholar 

  • Armas-Tizapantzia A, Montiel-Gonzalez AM (2016) RNAi silencing: a tool for functional genomics research on fungi. Fungal Biol Rev 30:91–100

    Google Scholar 

  • Asad S, Haris WA, Bashir A, Zafar Y, Malik KA, Malik NN, Lichtenstein CP (2003) Transgenic tobacco expressing geminiviral RNAs are resistant to the serious viral pathogen causing cotton leaf curl disease. Adv Virol 148:2341–2352

    CAS  Google Scholar 

  • Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    CAS  PubMed  Google Scholar 

  • Bayram O, Braus GH (2012) Coordination of secondary metabolism and development in fungi the velvet family of regulatory proteins. FEMS Microbiol Rev 36:1–24

    CAS  PubMed  Google Scholar 

  • Bayram O, Krappmann S, Seiler S, Vogt N, Braus GH (2008) Neurospora crassa ve-1 affects asexual conidiation. Fungal Genet Biol 45:127–138

    CAS  PubMed  Google Scholar 

  • Bhatia V, Bhattacharya R, Uniyal PL, Singh R, Niranjan RS (2012) Host generated siRNAs attenuate expression of serine protease gene in Myzus persicae. PLoS ONE 7:e46343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brent KJ (1995) Fungicide resistance in crop pathogens: How can it be managed? FRAC monograph no. 1. GCPF (now Crop Life International), Brussels. Available at: www.FRAC.info. Accessed 25 May 2020

  • Brookes G, Barfoot P (2017) GM crops: global socio-economic and environmental impacts (1996–2015). Dorcester: PG Economics LTD. Online: www.pgeconomics.co.uk/pdf/2017globalimpactstudy. Accessed 5 Aug 2020

  • Bucher E, Lohuis D, van Poppel PMJA, Geerts-Dimitriadou C, Goldbach R, Prins M (2006) Multiple virus resistance at a high frequency using a single transgene construct. J Gen Virol 87:3697–3701

    CAS  PubMed  Google Scholar 

  • Cagliari D, Santos EA dos, Dias N, Smagghe G, Zotti M (2018) Modulating gene expression—abridging the rnai and crispr-cas9 technologies. In: Singh A, Khan MW (eds) Nontransformative strategies for RNAi in crop protection. IntechOpen, London, pp 1–18

    Google Scholar 

  • Cagliari D, Dias NP, Galdeano DM, dos Santos EÁ, Smagghe G, Zotti MJ (2019) Management of pest insects and plant diseases by non- transformative RNAi. Front Plant Sci 10:1319

    PubMed  PubMed Central  Google Scholar 

  • Cai Q, Qiao L, Wang M, He B, Lin FM, Palmquist J, Huang SD, Jin H (2018) Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360(6393):1126–1129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Kastner C, Nowara D, Oliveira-Garcia E, Rutten T, Zhao Y, Deising HB, Kumlehn J, Schweizer P (2016) Host-induced silencing of Fusarium culmorum genes protects wheat from infection. J Exp Bot 67:4979–4991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Xiang Y, Xie H, Xu CL, Xie TF, Zhang C, Li Y (2013) Molecular characterization and functions of fatty acid and retinoid binding protein gene (Ab-far-1) in Aphelenchoides besseyi. PLoS ONE 8:e66011

    PubMed  PubMed Central  Google Scholar 

  • Christiaens O, Tardajos MG, Reyna ZLM, Dash M, Dubruel P, Smagghe G (2018) Increased RNAi efficacy in Spodoptera exigua via the formulation of dsRNA with guanylated polymers. Front Physiol 9:1–13

    Google Scholar 

  • Chuang C, Meyerowitz E (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:4985–4990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clements JC, Worby CA, Simonson-Leff N, Muda M, Maehama T, Hemmings BA, Dixon JE (2000) Use of double-stranded RNA Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci USA 97:6499–6503

    Google Scholar 

  • Cruz ARR, Aragão FJL (2014) RNAi-based enhanced resistance to Cowpea severe mosaic virus and Cowpea aphid - borne mosaic virus in transgenic cowpea. Plant Pathol 63:831

    CAS  Google Scholar 

  • Cui K, Shoemaker SP (2018) Public perception of genetically-modified (GM) food: a Nationwide Chinese Consumer Study. Jpn Sci Food 2:10

    Google Scholar 

  • de Framond A, Rich PJ, McMillan J, Ejeta G (2007) Effects on Striga parastitism of transgenic maize armed with RNAi constructs targeting essential S. asitica genes. In: Ejeta G, Gressel J (eds) Integrating new technologies for striga control: towards ending the witch-hunt. World Scientific Publishing Company Pte Ltd, Singapore, pp 185–196

    Google Scholar 

  • de Souza Jr JD, Coelho RR, Lourenço IT, da Rocha FR, Viana AA, de Macedo LL, da Silva MC, Carneiro RM, Engler G, de Almeida-Engler J, Grossi-de-Sa MF (2013) Knocking-down Meloidogyne incognita proteases by plant-delivered dsRNA has negative pleiotropic effect on nematode vigor. PLoS ONE 8:e85364

    Google Scholar 

  • Dinh PT, Brown CR, Elling AA (2014a) RNA interference of effector gene Mc16D10L confers resistance against Meloidogyne chitwoodi in Arabidopsis and potato. Phytopathology 104:1098e1106

    Google Scholar 

  • Dinh PT, Zhang L, Brown CR, Elling AA (2014b) Plant-mediated RNA interference of effector gene Mc16D10L confers resistance against Meloidogyne chitwoodi in diverse genetic backgrounds of potato and reduces pathogenicity of nematode offspring. Nematology 16:669e682

    Google Scholar 

  • Dodo HW, Konan KN, Chen FC, Egnin M, Viquez OM (2008) Alleviating peanut allergy using genetic engineering: the silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotechnol J 6:135–145

    CAS  PubMed  Google Scholar 

  • Dolgov S, Mikhaylov R, Serova T, Shulga O, Firsov A (2010) Pathogen derived methods for improving resistance of transgenic plums (Prunus domestica L.) for Plum pox virus infection. Julius Kühn Archiv 427:133–140

    Google Scholar 

  • Dutta TK, Papolu PK, Banakar P, Choudhary D, Sirohi A, Rao U (2015) Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes. Front Microbiol 6:260

    PubMed  PubMed Central  Google Scholar 

  • Elayabalan S, Kalaiponmani K, Subramaniam S, Selvarajan R, Panchanathan R, Muthuvelayoutham R, Kumar KK, Balasubramanian P (2013) Development of Agrobacterium-mediated transformation of highly valued hill banana cultivar Virupakshi (AAB) for resistance to BBTV disease. World J Microbiol Biotechnol 29:589e596

    Google Scholar 

  • Elling AA (2013) Major emerging problems with minor Meloidogyne species. Phytopathology 103:1092–1102

    PubMed  Google Scholar 

  • Escobar MA, Civerolo EL, Summerfelt KR, Dandekar AM (2001) RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc Natl Acad Sci USA 98:13437–13442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    CAS  PubMed  Google Scholar 

  • Fischer JR, Zapata F, Dubelman S, Mueller GM, Uffman JP, Jiang C, Jensen PD, Levine SL (2017) Aquatic fate of a double-stranded RNA in a sediment–-water system following an over-water application. Environ Toxicol Chem 36(3):727–734

    CAS  PubMed  Google Scholar 

  • Fu KY, Guo WC, Lü FG, Liu XP, Li GQ (2014) Response of the vacuolar ATPase subunit E to RNA interference and four chemical pesticides in Leptinotarsa decemlineata (Say). Pestic Biochem Physiol 114:16–23

    CAS  PubMed  Google Scholar 

  • Gaffar FY, Koch A (2019) Catch me if you can! RNA silencing-based improvement of antiviral plant immunity. Viruses 11(7):673

    CAS  PubMed Central  Google Scholar 

  • Ghag SB, Shekhawat UKS, Ganapathi TR (2014) Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana. Plant Biotechnol J 12:541–553

    CAS  PubMed  Google Scholar 

  • Gilisen LJ, Bolhar ST, Matos CI, Rouwendal GJ, Boone MJ, Krens FA, Zuidmeer L, Leeuwen AV, Akkerdaas J, Hoffmann-Sommergruber K, Knulst AC, Bosch D, de Weg WEV, Ree RV (2005) Silencing of major apple allergen Mal d 1 by using the RNA interference approach. J Allergy Clin Immunol 115:364–369

    Google Scholar 

  • Gong L, Chen Y, Hu Z, Hu M (2013) Testing insecticidal activity of novel chemically synthesized siRNA against Plutella xylostella under laboratory and field conditions. PLoS ONE 8(5):e62990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Gao S, Lin Q, Wang H, Que Y, Xu L (2015) Transgenic sugarcane resistant to Sorghum mosaic virus based on coat protein gene silencing by RNA interference. Biomed Res Int 2015:861907

    PubMed  PubMed Central  Google Scholar 

  • Guo Y, Wu H, Zhang X, Ma E, Guo Y, Zhu KY, Zhang J (2016) RNA interference of cytochrome P450 CYP6F subfamily genes affects susceptibility to different insecticides in Locusta migratoria. Pest Manag Sci 72(11):2154–2165

    CAS  PubMed  Google Scholar 

  • Hebeisen M, Drysdale J, Roy R (2008) Suppressors of the cdc-25.1(gf)-associated intestinal hyperplasia reveal important roles forprp-8 and a subset of splicing factors in C. elegans. RNA 14(12):2618–2633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217–218:109–119

    PubMed  Google Scholar 

  • Hily J-M, Ravelonandro M, Damsteegt V, Bassett C, Petri C, Liu Z, Scorza R (2007) Plum pox virus coat protein gene intron-hairpin-RNA (ihpRNA) constructs provide resistance to plum pox virus in nicotiana benthamiana Domin. and plum (Prunus domestica L.). J Am Soc Hortic Sci 132(6):850–858

    CAS  Google Scholar 

  • Himmelbach A, Liu L, Zierold U, Altschmied L, Maucher H, Beier F, Müller D, Hensel G, Heise A, Schützendübel A, Kumlehn J, Schweizer P (2010) Promoters of the barley germin-like GER4 gene cluster enable strong transgene expression in response to pathogen attack. Plant Cell 22:937–952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Parekh U, Maruta N, Tursov Y, Botella JR (2015) Down-regulation of Fusarium oxysporum endogenous genes by host-delivered RNA interference enhances disease resistance. Front Chem 5:3

    Google Scholar 

  • Huang G, Allen R, Davis EL, Baum TJ, Hussey RS (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci USA 103(39):14302–14306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter W, Ellis J, Vanengelsdorp D, Hayes J, Westervelt D, Glick E, Williams M, Sela I, Maori E, Pettis J, Cox-Foster D, Paldi N (2010) Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). PLoS Pathog 6:e1001160

    PubMed  PubMed Central  Google Scholar 

  • Huvenne H, Smagghe G (2010) Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 56:227–235

    CAS  PubMed  Google Scholar 

  • Hwang SH, Lee IA, Yie SW, Hwang DJ (2008) Identification of an OsPR10a promoter region responsive to salicylic acid. Planta 227:1141–1150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iberkleid I, Vieira P, de Almeida EJ, Firester K, Spiegel Y, Horowitz SB (2013) Fatty acid and retinol-binding protein, Mj-FAR-1 induces tomato host susceptibility to root-knot nematodes. PLoS ONE 8:e64586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jagtap UB, Gurab RG, Bapat VA (2011) Role of RNA interference in plant improvement. Naturwissenchaften 98:473–492

    CAS  Google Scholar 

  • Jahan SN, Åsman AK, Corcoran P, Fogelqvist J, Vetukuri RR, Dixelius C (2015) Plant-mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans. J Exp Bot 66(9):2785–2794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jan FJ, Fagoaga C, Pang S-Z, Gonsalves D (2000a) A minimum length of N gene sequence in transgenic plants is required for RNA-mediated tospovirus resistance. J Gen Virol 81:235–242

    CAS  PubMed  Google Scholar 

  • Jan FJ, Fagoaga C, Pang SZ, Gonsalves D (2000b) A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. J Gen Virol 81:2103–2109

    CAS  PubMed  Google Scholar 

  • Joga MR, Zotti MJ, Smagghe G, Christiaens O (2016) RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: what we know so far. Front Physiol 7:1–14

    Google Scholar 

  • Johnson SN, Jones TH (2017) Emerging issues and future perspectives for global climate change studies. In: Johnson SN, Jones TH (eds) Global climate change and terrestrial invertebrates. John Wiley and Sons Ltd, Chichester, pp 368–377

    Google Scholar 

  • Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MG, Kikuchi T, Manzanilla-López R, Palomares-Rius JE, Wesemael WM, Perry RN (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946–961

    PubMed  PubMed Central  Google Scholar 

  • Kennerdell JR, Carthew RW (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95:1017–1026

    CAS  PubMed  Google Scholar 

  • Kennerdell JR, Carthew RW (2000) Heritable gene silencing in Drosophila using double-stranded RNA. Nat Biotechnol 18:896–898

    CAS  PubMed  Google Scholar 

  • Kim HJ, Kim M, Pak JH, Im HH, Lee DH, Kim K, Lee J, Kim D, Choi HK, Jung HW, Chung Y (2016) RNAi-mediated Soybean mosaic virus (SMV) resistance of a Korean Soybean cultivar. Plant Biotechnol Rep 10:257–267

    Google Scholar 

  • Koch A, Kumar N, Weber L, Keller H, Imani J, Kogel KH (2013) Host-induced gene silencing of cytochrome P450 lanosterol C14a-demethylase-encoding genes confers strong resistance to Fusarium species. Proc Natl Acad Sci USA 110:19324–19329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koch A, Biedenkopf D, Furch A, Weber L, Rossbach O, Abdellatef E, Linicus L, Johannsmeier J, Jelonek L, Goesmann A, Cardoza V, McMillan J, Mentzel T, Kogel KH (2016) An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathog 12:e1005901

    PubMed  PubMed Central  Google Scholar 

  • Konakalla NC, Kaldis A, Berbati M, Masarapu H, Voloudakis AE (2016) Exogenous application of double-stranded RNA molecules from TMV p126 and CP genes confers resistance against TMV in tobacco. Planta 244:961–969

    CAS  PubMed  Google Scholar 

  • Kovalchuk N, Li M, Wittek F, Reid N, Singh R, Shirley N, Ismagul A, Eliby S, Johnson A, Milligan AS, Hrmova M, Langridge P, Lopato S (2010) Defensin promoters as potential tools for engineering disease resistance in cereal grains. Plant Biotechnol J 8:47–64

    CAS  PubMed  Google Scholar 

  • Kreuze JF, Klein IS, Lazaro MU, Chuquiyuri WJ, Morgan GL, Mejía PG, Ghislain M, Valkonen JP (2008) RNA silencing-mediated resistance to a crinivirus (Closteroviridae) in cultivated sweet potato (Ipomoea batatas L.) and development of sweet potato virus disease following co-infection with a potyvirus. Mol Plant Pathol 9:589–598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Myung K, Guse D, Donkin B, Proctor RH, Grayburn WS, Calvo AM (2006) FvVE1 regulates filamentous growth, the ratio of microconidia to macroconidia and cell wall formation in Fusarium verticillioides. Mol Microbiol 62:1418–1432

    CAS  PubMed  Google Scholar 

  • Li J, Todd TC, Oakley TR, Lee J, Trick HN (2010) Host-derived suppression of nematode reproductive and fitness genes decreases fecundity of Heterodera glycinesIchinohe. Planta 232:775–785

    CAS  PubMed  Google Scholar 

  • Li H, Guan R, Guo H, Miao X (2015) New insights into an RNAi approach for plant defence against piercing-sucking and stem-borer insect pests. Plant Cell Environ 38:2277–2285

    CAS  PubMed  Google Scholar 

  • Li S, Li M, Li Z, Zhu Y, Ding H, Fan X, Li F, Wang Z (2019) Effects of the silencing of CmMET1 by RNA interference in chrysanthemum (Chrysanthemum morifolium). Plant Biotechnol Rep 13:63–72. https://doi.org/10.1007/s11816-019-00516-5

    Article  Google Scholar 

  • Lilley CJ, Davies LJ, Urwin PE (2012) RNA interference in plant parasitic nematodes: a summary of the current status. Parasitology 139:630–640

    CAS  PubMed  Google Scholar 

  • Lin C-H, Chen C-Y (2017) The pathogen-inducible promoter of defence-related LsGRP1 gene from Lilium functioning in phylogenetically distinct species of plants. Plant Sci 254:22–31

    CAS  PubMed  Google Scholar 

  • Lin YH, Huang JH, Liu Y, Belles X, Lee HJ (2017) Oral delivery of dsRNA lipoplexes to German cockroach protects dsRNA from degradation and induces RNAi response. Pest Manag Sci 73:960–966

    CAS  PubMed  Google Scholar 

  • Lindbo JA, Dougherty WG (2005) Plant pathology and RNAi: a brief history. Annu Rev Phytopathol 43:191–204

    CAS  PubMed  Google Scholar 

  • Liu F, Wang X, Zhao Y, Li Y, Liu Y, Sun J (2015) Silencing the HaAK gene by transgenic plant-mediated RNAi impairs larval growth of Helicoverpa armigera. Int J Biol Sci 11:67–74

    PubMed  PubMed Central  Google Scholar 

  • Liu F, Yang B, Zhang A, Ding D, Wang G (2019) Plant-mediated RNAi for controlling Apolygus lucorum. Front Plant Sci 10:64

    PubMed  PubMed Central  Google Scholar 

  • López C, Cervera M, Fagoaga C, Moreno P, Navarro L, Flores R, Peña L (2010) Accumulation of transgene-derived siRNAs is not sufficient for RNAi-mediated protection against Citrus tristeza virus in transgenic Mexican lime. Mol Plant Pathol 11:33–41

    PubMed  Google Scholar 

  • Lourenço-Tessutti IT, Souza JDA, Martins-de-Sa D, Viana AAB, Carneiro RMDG, Togawa RC, De Almeida-Engler J, Batista JAN, Silva MCM, Fragoso RR, Grossi-de-Sa MF (2015) Knock-down of heat-shock protein 90 and isocitrate lyase gene expression reduced root-knot nematode reproduction. Phytopathology 105(5):628–637

    PubMed  Google Scholar 

  • Mao J, Zeng F (2014) Plant-mediated RNAi of a gap gene-enhanced tobacco tolerance against the Myzus persicae. Transgenic Res 23:145–152

    CAS  PubMed  Google Scholar 

  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    CAS  PubMed  Google Scholar 

  • Mao YB, Tao XY, Xue XY, Wang LJ, Chen XY (2011) Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res 20:665–673

    CAS  PubMed  Google Scholar 

  • Mao YB, Xue XY, Tao XY, Yang CQ, Wang LJ, Chen XY (2013) Cysteine protease enhances plant-mediated bollworm RNA interference. Plant Mol Biol 83:119–129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medina-Hernández D, Rivera-Bustamante RF, Tenllado F, Holguín-Peña RJ (2013) Effects and effectiveness of two RNAi constructs for resistance to Pepper golden mosaic virus in Nicotiana benthamiana plants. Viruses 5(12):2931–2945

    PubMed  PubMed Central  Google Scholar 

  • Miguel KS, Scott JG (2016) The next generation of insecticides: dsRNA is stable as a foliar-applied insecticide. Pest Manag Sci 72:801–809

    Google Scholar 

  • Mitter N, Worrall EA, Robinson KE, Li P, Jain RG, Taochy C, Fletcher SJ, Carroll BJ, Lu GQ, Xu ZP (2017a) Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat Plants 3:16207

    CAS  PubMed  Google Scholar 

  • Mitter N, Worrall EA, Robinson KE, Xu ZP, Carroll BJ (2017b) Induction of virus resistance by exogenous application of double-stranded RNA. Curr Opin Virol 26:49–55

    CAS  PubMed  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2(4):279–289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson N, Perzov N, Cohen A, Hagai K, Padler V, Nelson H (2000) The cellular biology of proton-motive force generation by V-ATPases. J Exp Biol 203:89–95

    CAS  PubMed  Google Scholar 

  • Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol 22:746–754

    CAS  PubMed  Google Scholar 

  • Niu JH, Jian H, Xu JM, Chen CD, Guo QX (2012) RNAi silencing of the Meloidogyne incognita Rpn7 gene reduces nematode parasitic success. Eur J Plant Pathol 134:131–144

    CAS  Google Scholar 

  • Nunes CC, Dean RA (2012) Host-induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies. Mol Plant Pathol 13:519–529

    CAS  PubMed  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Google Scholar 

  • Oerke EC, Dehne HW, Schönbeck F, Weber A (1994) Crop production and crop protection. Estimated losses in major food and cash crops. Elsevier, Amsterdam

    Google Scholar 

  • Paine JD (2018) Global GMO policy. Purdue Policy Research Institute (PPRI) policy briefs: 4 (1). Available at: https://docs.lib.purdue.edu/gpripb/vol4/iss1/4. Accessed 5 Aug 2020

  • Pandolfini T (2009) Seedless fruit production by hormonal regulation of fruit set. Nutrients 1:168–177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pang S-Z, Jan F-J, Gonsalves D (1997) Nontarget DNA sequences reduce the transgene length necessary for RNA-mediated tospovirus resistance in transgenic plants. Proc Natl Acad Sci USA 94:8261–8266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panwar V, McCallum B, Bakkeren G (2013) Endogenous silencing of Puccinia triticina pathogenicity genes through in planta-expressed sequences leads to suppression of rust diseases on wheat. Plant J 73:521–532

    CAS  PubMed  Google Scholar 

  • Papolu PK, Gantasala NP, Kamaraju D, Banakar P, Sreevathsa R, Rao U (2013) Utility of host delivered RNAi of two FMRF amide like peptides, flp-14 and flp-18, for the management of root knot nematode Meloidogyne incognita. PLoS ONE 8:e80603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parker KM, Barragán Borrero V, Van Leeuwen DM, Lever MA, Mateescu B, Sander M (2019) Environmental fate of RNA interference pesticides: adsorption and degradation of double-stranded RNA molecules in agricultural soils. Environ Sci Technol 53:3027–3036

    CAS  PubMed  Google Scholar 

  • Patil BL, Bagewadi B, Yadav JS, Fauquet CM (2016) Mapping and identification of cassava mosaic geminivirus DNA-A and DNA-B genome sequences for efficient siRNA expression and RNAi based virus resistance by transient agro-infiltration studies. Virus Res 213:109–115

    CAS  PubMed  Google Scholar 

  • Petrick JS, Moore WM, Heydens WF, Koch MS, Sherman JH, Lemke SL (2015) A 28-day oral toxicity evaluation of small interfering RNAs and a long double-stranded RNA targeting vacuolar ATPase in mice. Regul Toxicol Pharmacol 71:8–23

    CAS  PubMed  Google Scholar 

  • Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA (2011) Silencing of aphid genes by dsRNA feeding from plants. PLoS ONE 6:e25709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus tuhringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9:283–300

    CAS  PubMed  Google Scholar 

  • Sanju S, Siddappa S, Thakur A, Shukla PK, Srivastava N, Pattanayak D, Sharma S, Singh BP (2015) Host-mediated gene silencing of a single effector gene from the potato pathogen Phytophthora infestans imparts partial resistance to late blight disease. Funct Integr Genomics 15(6):697–706

    CAS  PubMed  Google Scholar 

  • Saurabh S, Vidyarthi AS, Prasad D (2014) RNA interference: concept to reality in crop improvement. Planta 239(3):543–564

    CAS  PubMed  Google Scholar 

  • Schweizer P, Pokorny J, Schulze-Lefer P, Dudler R (2000) Double-stranded RNA interferes with gene function at the single-cell level in cereals. Plant J 24:895–903

    CAS  PubMed  Google Scholar 

  • Scorza R, Callahan A, Dardick C, Ravelonandro M, Polak J, Malinowski T, Zagrai IA, Cambra M, Kamenova I (2013) Genetic engineering of Plum pox virus resistance: “HoneySweet” plum-from concept to product. Plant Cell Tissue Organ Cult 115:1–12

    CAS  Google Scholar 

  • Shekhawat UK, Ganapathi TR, Hadapad AB (2012) Transgenic banana plants expressing small interfering RNAs targeted against viral replication initiation gene display high-level resistance to banana bunchy top virus infection. J Gen Virol 93:1804–1813

    CAS  PubMed  Google Scholar 

  • Shimizu T, Yoshii M, Wei T, Hirochika H, Omura T (2009) Silencing by RNAi of the gene for Pns12, a viroplasm matrix protein of Rice dwarf virus, results in strong resistance of transgenic rice plants to the virus. Plant Biotechnol J 7:24–32

    CAS  PubMed  Google Scholar 

  • Shoup Rupp JL, Cruz LF, Trick HN, Fellers JP (2016) RNAi-mediated, stable resistance to Triticum mosaic virus in wheat. Crop Sci 56:1602–1610

    Google Scholar 

  • Steeves RM, Todd TC, Essig JS, Trick HN (2006) Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction. Funct Plant Biol 33:991–999

    CAS  PubMed  Google Scholar 

  • Tan CHJ, Jones MGK, Fosu N (2013) Gene silencing in root lesion nematodes (Pratylenchus spp.) significantly reduces reproduction in a plant host. Exp Parasitol 133:166–178

    CAS  PubMed  Google Scholar 

  • Tang T, Zhao C, Feng X, Liu X, Qiu L (2012) Knockdown of several components of cytochrome P450 enzyme systems by RNA interference enhances the susceptibility of Helicoverpa armigera to fenvalerate. Pest Manag Sci 68:1501–1511

    CAS  PubMed  Google Scholar 

  • Taning CNT, Christiaens O, Berkvens N, Casteels H, Maes M, Smagghe G (2016) Oral RNAi to control Drosophila suzukii: laboratory testing against larval and adult stages. J Pest Sci 89:803–814

    Google Scholar 

  • Tao XY, Xue XY, Huang YP, Chen XY, Mao YB (2012) Gossypol-enhanced P450 gene pool contributes to cotton bollworm tolerance to a pyrethroid insecticide. Mol Ecol 21:4371–4385

    CAS  PubMed  Google Scholar 

  • Teng PS (ed) (1987) Crop loss assessment and pest management. APS Press, St Paul

    Google Scholar 

  • Teng PS, Krupa SV (Eds.) (1980) Assessment of losses which constrain production and crop improvement in agriculture and forestry. Proceedings of the E. C. Stackman Commemorative Symposium. University of Minnesota, St. Paul

  • Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, Albrechtsen M, An C, Aymeric JL, Barthel A, Bebas P, Bitra K, Bravo A, Chevalier F, Collinge DP, Crava CM, de Maagd RA, Duvic B, Erlandson M, Faye I, Felfoldi G, Fujiwara H, Futahashi R, Gandhe AS, Gatehouse HS, Gatehouse LN, Giebultowicz JM, Gomez I, Grimmelikhuijzen CJ, Groot AT, Hauser F, Heckel DG, Hegedus DD, Hrycaj S, Huang L, Hull JJ, Iatrou K, Iga M, Kanost MR, Kotwica J, Li C, Li J, Liu J, Lundmark M, Matsumoto S, Meyering-Vos M, Millichap PJ, Monteiro A, Mrinal N, Niimi T, Nowara D, Ohnishi A, Oostra V, Ozaki K, Papakonstantinou M, Popadic A, Rajam MV, Saenko S, Simpson RM, Soberon M, Strand MR, Tomita S, Toprak U, Wang P, Wee CW, Whyard S, Zhang W, Nagaraju J, Ffrench-Constant RH, Herrero S, Gordon K, Swevers L, Smagghe G (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57:231–245

    CAS  PubMed  Google Scholar 

  • Thakur N, Upadhyay SK, Verma PC, Chandrashekar K, Tuli R, Singh PK (2014) Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene. PLoS ONE 9:e87235

    PubMed  PubMed Central  Google Scholar 

  • Tinoco ML, Dias BB, Dall’Astta RC, Pamphile JA, Aragao FJ (2010) In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA. BMC Biol 8:1–11

    Google Scholar 

  • Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A, Croll D, Da Silva C, Gomez SK, Koul R, Ferrol N, Fiorilli V, Formey D, Franken P, Helber N, Hijri M, Lanfranco L, Lindquist E, Liu Y, Malbreil M, Morin E, Poulain J, Shapiro H, van Tuinen D, Waschke A, Azcon-Aguilar C, Becard G, Bonfante P, Harrison MJ, Kuster H, Lammers P, Paszkowski U, Requena N, Rensing SA, Roux C, Sanders IR, Shachar-Hill Y, Tuskan G, Young JPW, Gianinazzi-Pearson V, Martin F (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional trade-offs in an obligate symbiont. New Phytol 193:755–769

    CAS  PubMed  Google Scholar 

  • Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G (2008) Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 9:1–22

    Google Scholar 

  • Urwin PE, Lilley CJ, Atkinson HJ (2002) Ingestion of double-stranded RNA by pre-parasitic juvenile cyst nematodes leads to RNA interference. Mol Plant Microbe Interact 15:747–752

    CAS  PubMed  Google Scholar 

  • Viss WJ, Pitrak J, Humann J, Cook M, Driver J, Ream W (2003) Crown-gall disease-resistant transgenic apple trees that silence Agrobacterium tumefaciens oncogenes. Mol Breeding 12:283–295

    CAS  Google Scholar 

  • Walawage SL, Britton MT, Leslie CA, Uratsu SL, Li Y, Dandekar AM (2013) Stacking resistance to crown gall and nematodes in walnut rootstocks. BMC Genomics 14:668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang MB, Abbott DC, Waterhouse PM (2000) A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to Barley tallow dwarf virus. Mol Plant Pathol 6:347–356

    Google Scholar 

  • Wang M, Weiberg A, Lin F-M, Thomma BPHJ, Huang H-D, Jin H (2016) Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat Plants 2:16151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waterhouse PM, Graham MW, Wang M-B (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Webster JPG, Bowles RG, Williams NT (1999) Estimating the economic benefits of alternative pesticide usage scenarios: wheat production in the United Kingdom. Crop Prot 18(2):83–89

    Google Scholar 

  • Wei T, Kikuchi A, Suzuki N, Shimizu T, Hagiwara K, Chen H, Omura T (2006) Pns4 of rice dwarf virus is a phosphoprotein, is localized around the viroplasm matrix, and forms minitubules. Adv Virol 151:1701–1712

    CAS  Google Scholar 

  • Whyard S (2015) Insecticidal RNA, the long and short of it. Science 347:950–951

    CAS  PubMed  Google Scholar 

  • Winston WM, Molodowitch C, Hunter CP (2002) Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295:2456–2459

    CAS  PubMed  Google Scholar 

  • Winston WM, Sutherlin M, Wright AJ, Feinberg EH, Hunter CP (2007) Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proc Natl Acad Sci USA 104:10565–10570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong A, Yao Q, Peng R, Li X, Han P, Fan H (2005) Different effects on ACC oxidase gene silencing triggered by RNA interference in transgenic tomato. Plant Cell Rep 23:639–646

    CAS  PubMed  Google Scholar 

  • Xiong Y, Zeng H, Zhang Y, Xu D, Qiu D (2013) Silencing the HaHR3 Gene by transgenic plant-mediated RNAi to disrupt Helicoverpa armigera development. Int J Biol Sci 9:370–381

    PubMed  PubMed Central  Google Scholar 

  • Xue B, Hamamouch N, Li C, Huang G, Hussey RS (2013) The 8D05 parasitism gene of Meloidogyne incognitais required for successful infection of host roots. Phytopathology 103:175–181

    CAS  PubMed  Google Scholar 

  • Yadav BC, Veluthambi K, Subramaniam K (2006) Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol 148:219–222

    CAS  PubMed  Google Scholar 

  • Yang Y, Jittayasothorn Y, Chronis D, Wang X, Cousins P, Zhong GY (2013) Molecular characteristics and efficacy of 16D10 siRNAs in inhibiting root-knot nematode infection in transgenic grape hairy roots. PLoS ONE 8:e69463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Niu L, Zhang W, Yang J, Xing G, He H, Guo D, Du Q, Qian X, Yao Y, Li Q, Dong Y (2018) RNAi-mediated SMV P3 cistron silencing confers significantly enhanced resistance to multiple Potyvirus strains and isolates in transgenic soybean. Plant Cell Rep 37(1):103–114

    CAS  PubMed  Google Scholar 

  • Yin C, Jurgenson JE, Hulbert SH (2011) Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol Plant Microbe Interact 24:554–561

    CAS  PubMed  Google Scholar 

  • Youssef RM, Kim KH, Haroon SA, Matthews BF (2013) Post-transcriptional gene silencing of the gene encoding aldolase from soybean cyst nematode by transformed soybean roots. Exp Parasitol 134:266–274

    CAS  PubMed  Google Scholar 

  • Zhang X, Sato S, Ye X, Dorrance AE, Morris TJ, Clemente T, Qu F (2011) Robust RNAi-based resistance to mixed infection of three viruses in soybean plants expressing separate short hairpins from a single transgene. Phytopathology 101:1264–1269

    CAS  PubMed  Google Scholar 

  • Zhang H, Guo J, Voegele RT, Zhang J, Duan Y, Luo H, Kang Z (2012) Functional characterization of calcineurin homologs PsCNA1/PsCNB1 in Puccinia striiformis f. sp. tritici using a host-induced RNAi system. PLoS ONE 7(11):e49262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Li HC, Miao XX (2013) Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control. Insect Sci 20:15–30

    PubMed  Google Scholar 

  • Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R (2015) Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 347:991–994

    CAS  PubMed  Google Scholar 

  • Zhang T, Zhao YL, Zhao JH, Wang S, Jin Y, Chen ZQ, Fang YY, Hua CL, Ding SW, Guo HS (2016) Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat Plants 2(10):16153

    CAS  PubMed  Google Scholar 

  • Zhu J, Oger PM, Schrammeijer B, Hooykaas PJ, Farrand SK, Winans SC (2000) The bases of crown gall tumorigenesis. J Bacteriol 182:3885–3895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Qi T, Yang Q, He F, Tan C, Ma W, Voegele RT, Kang Z, Guo J (2017) Host-induced gene silencing of the MAPKK gene PsFUZ7 confers stable resistance to wheat stripe rust. Plant Physiol 175:1853–1863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zou X, Song E, Peng A, He Y, Xu L, Lei T, Yao L, Chen S (2014) Activation of three pathogen-inducible promoters in transgenic citrus (Citrus sinensis Osbeck) after Xanthomonas axonopodis pv. citri infection and wounding. Plant Cell Tissue Organ Cult 1(17):85

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Director-General of MPOB for the permission to publish this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Omar Abd Rasid or Mui-Yun Wong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, FH., Rasid, O.A., As’wad, A.W.M. et al. The future is now: revolution of RNA-mediated gene silencing in plant protection against insect pests and diseases. Plant Biotechnol Rep 14, 643–662 (2020). https://doi.org/10.1007/s11816-020-00640-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-020-00640-7

Keywords

Navigation