Skip to main content

Advertisement

Log in

Expression of Meloidogyne incognita PolA1 hairpin RNA reduced nematode multiplication in transgenic tomato

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Controlling root-knot nematodes (Meloidogyne spp.) using RNA interference (RNAi)-based molecular strategy is currently gaining consideration as a safer alternative to the use of chemical nematicides. However, identifying target genes whose knockdown in the parasites can effectively protect host plants is critical to success of this strategy. In this study, we transformed tomato plants to express hairpin RNA of Meloidogyne incognita-specific sequence (MiPA) of PolA1, an essential single-copy nuclear gene encoding the largest subunit of RNA polymerase I enzyme. We then evaluated nematode resistance in T1 transgenic lines for efficacy of host plant-mediated silencing of PolA1 gene in invading nematodes. We observed a significant reduction in nematode egg masses per plant root, eggs per egg mass and overall parasite multiplication in the transgenic plants compared to the wild type. Transgenic plants also had a reduced number of nematode galls per plant root than wild type but not significant. Although agronomic traits evaluated at the early growth stage were comparable in transgenics and wild types of tomato plants, production of MiPA-specific siRNAs in transgenic plants as well as the significant reduction of nematode PolA1 gene expression in feeding nematodes isolated from roots of transgenic plants provided evidence of host-induced gene silencing. Put together, our results are an indication that silencing of PolA1 gene is useful for reducing propagation of root-knot nematodes in tomato hosts. Its application to other crops may be possible and useful in improving agricultural productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed I, Islam M, Arshad W, Mannan A, Ahmad W, Mirza B (2009) High-quality plant DNA extraction for PCR: an easy approach. J Appl Genet 50(2):105–107

    Article  CAS  Google Scholar 

  • Ajjappala H, Sim J, Hahn B (2012) RNA interference silencing in root-knot nematodes. Korean J Inter Agric 24(4):485–493

    Google Scholar 

  • Bird DM, Kaloshian I (2003) Are roots special? Nematodes have their say. Physiol Plant Mol Pathol 62:115–123

    Article  Google Scholar 

  • Boerma HR, Hussey RS (1992) Breeding plants for resistance to nematodes. J Nematol 24(2):242–252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary S, Dutta TK, Tyagi N, Shivakumara TN, Papolu PK, Chobhe KA, Rao U (2019) Host-induced silencing of Mi-msp-1 confers resistance to root-knot nematode Meloidogyne incognita in egg plant. Transgenic Res. https://doi.org/10.1007/s11248-019-00126-5

    Article  PubMed  Google Scholar 

  • Coyne DL, Ross JL (2014) Protocol for nematode resistance screening: Root knot nematodes, Meloidogyne spp. International Institute of Tropical Agriculture (IITA), Ibadan

    Google Scholar 

  • Cruz-Mendivil A, Rivera-Lopez J, German-Baez LJ, Lopez-Meyer M, Hernandez-Verdugo S, Lopez-Valenzuela JA, Reyes-Moreno C, Valdez-Ortiz A (2011) Transformation of tomato cv. micro-tom from leaf explants. HortScience 46:1655–1660

    Article  CAS  Google Scholar 

  • Antonio de Souza JD Jr, Ramos Coelho R, Tristan Lourenco I, da Rocha Fragoso R, Barboso Viana AA, Pepino de Macedo LL, Mattar da Silva MC, Gomes Carneiro RM, Engler G, Engler J, Grossi-de-Sa MF (2013) Knocking down Meloidogyne incognita proteases by plant-delivered dsRNA has negative pleiotropic effect on nematode vigor. PLoS One 8(12):e85364. https://doi.org/10.1371/journal.pone.0085364

    Article  CAS  Google Scholar 

  • Dong W, Holbrook CC, Timper P, Brenneman TB, Mullinix BG (2007) Comparison of methods for assessing resistance to Meloidogyne arenaria in Peanut. J Nematol 39(2):169–175

    PubMed  PubMed Central  Google Scholar 

  • Dutta TK, Banakar P, Rao U (2015a) The status of RNAi-based transgenic research in plant nematology. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00760

    Article  PubMed  PubMed Central  Google Scholar 

  • Dutta TK, Papolu PK, Banakar P, Choudhary D, Sirohi A, Rao U (2015b) Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root knot nematodes. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00260

    Article  PubMed  PubMed Central  Google Scholar 

  • Fairbairn DJ, Cavallaro AS, Bernard M, Mahalinga-Iyer J, Graham MW, Botella JR (2007) Host-delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes. Planta 226(6):1525–1533

    Article  CAS  Google Scholar 

  • Hirai S, Oka S, Adachi E, Kodama H (2007) The effects of spacer sequences on silencing efficiency of plant RNAi vectors. Plant Cell Rep 26(5):651–659

    Article  CAS  Google Scholar 

  • Huang G, Allen R, Davis EL, Baum TJ, Hussey RS (2006) Engineering broad range root knot resistance in transgenic plants by RNAi silencing of a conserved and essential root knot nematode parasitism gene. Proc Natl Acad Sci 103(39):14302–14306

    Article  CAS  Google Scholar 

  • Kaur P, Bansal KC (2010) Efficient production of transgenic tomatoes via agrobacterium-mediated transformation. Biol Plant 54(2):344–348

    Article  CAS  Google Scholar 

  • Kong K, Ntui VO, Makabe S, Khan RS, Mii M, Nakamura I (2014) Transgenic tobacco and tomato plants expressing Wasabi defensin genes driven by root-specific LjNRT2 and AtNRT2.1 promoters confer resistance against Fusarium oxysporum. Plant Biotech 31:89–96

    Article  CAS  Google Scholar 

  • Lilley CJ, Bakhetia M, Charlton WL, Urwin PE (2007) Recent progress in the development of RNA interference for plant parasitic nematodes. Mol Plant Pathol 8(5):701–711

    Article  CAS  Google Scholar 

  • Miki D, Shimamoto K (2004) Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol 45(4):490–495

    Article  CAS  Google Scholar 

  • Mlotshwa S, Pruss GJ, Peragine A, Endres MW, Li J, Chen X, Poethig RS, Bowman LH, Vance V (2008) DICER-LIKE2 plays a primary role in transitive silencing of transgenes in Arabidopsis. PLoS ONE 3(3):1–11

    Article  Google Scholar 

  • Nakamura I (2010) Method of identifying eukaryotic species. JP2010088398

  • Niu JH, Jian H, Xu J, Chen C, Guo Q (2012) RNAi silencing of the Meloidogyne incognitaRpn7 gene reduced nematode parasitic success. Eur J Plant Pathol 134:131–144

    Article  CAS  Google Scholar 

  • Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P (2010) HIGS: host-Induced Gene Silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141

    Article  CAS  Google Scholar 

  • Ntui VO, Kong K, Khan RS, Igawa T, Janavi GJ, Rabindran R, Nakamura I, Mii M (2015) Resistance to Sri Lankan Cassava Mosaic Virus (SLCMV) in genetically engineered cassava cv. KU50 through RNA Silencing. PLoS One 10(4):e0120551. https://doi.org/10.1371/journal.pone.0120551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papolu PK, Gantasala NP, Kamaraju D, Banakar P, Sreevathsa R, Rao U (2013) Utility of host delivered RNAi of two FMRF amide like peptides, flp-14 and flp-18, for the management of root knot nematode, Meloidogyne incognita. PLoS One 8(11):e80603. https://doi.org/10.1371/journal.pone.0080603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers SO, Bendichl AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76

    Article  CAS  Google Scholar 

  • Sen GL, Blau HM (2006) A brief history of RNAi: the silence of the genes. FASEB J 20:1293–1299

    Article  CAS  Google Scholar 

  • Shivakumara TN, Chaudhary S, Kamaraju D, Dutta TK, Papolu PK, Banakar P, Sreevathsa R, Singh B, Manjaiah KM, Rao U (2017) Host-induced silencing of two pharyngeal gland genes conferred transcriptional alteration of cell wall modifying enzymes of Meloidogyne incognita vis-à-vis perturbed nematode infectivity in eggplant. Front Plant Sci 8:473

    Article  Google Scholar 

  • Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    Article  CAS  Google Scholar 

  • Thomas C, Cottage A (2006) Genetic engineering for resistance. In: Perry RN, Moens M (eds) Plant nematology. CAB International, Wallingford, pp 438–458

    Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771

    Article  CAS  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  CAS  Google Scholar 

  • Yadav BC, Veluthambi K, Subramaniam K (2006) Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol 148:219–222

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Hiroyuki Tsuji of Kihara Institute of Biological Research, Yokohama City University, Japan for the kind provision of pANDA35HK RNAi binary vector. We also gratefully acknowledge the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) for the award of scholarship to P. N. Chukwurah.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikuo Nakamura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1402 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chukwurah, P.N., Poku, S.A., Yokoyama, A. et al. Expression of Meloidogyne incognita PolA1 hairpin RNA reduced nematode multiplication in transgenic tomato. Plant Biotechnol Rep 13, 591–601 (2019). https://doi.org/10.1007/s11816-019-00552-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-019-00552-1

Keywords

Navigation