Skip to main content
Log in

Phytoremediation of 2,4,6-trinitrotoluene by Arabidopsis plants expressing a NAD(P)H-flavin nitroreductase from Enterobacter cloacae

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

2,4,6-Trinitrotoluene (TNT) is released into natural environment from demilitarization facilities, manufacturing, and explosive remnants of war; this compound is one of the most recalcitrant explosives. TNT contamination is associated with human health risks because TNT strongly causes mutagenicity and carcinogenicity. Unfortunately, effective and affordable technologies to remediate TNT-contaminated environments are insufficient. As such, studies have been conducted to develop strategies using plants to extract and detoxify TNT from environment. In this study, a system was designed to overcome high phytotoxicity of TNT by expressing a NAD(P)H-flavin nitroreductase from Enterobacter cloacae to investigate the possibility of TNT phytoremediation. The resulting transgenic Arabidopsis showed a remarkable improvement in the ability to tolerate, absorb, and detoxify TNT as evidenced by their growth condition. This study can be used as reference to facilitate the effective cleanup of TNT-contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ayoub K, Hullebusch ED, Cassir M, Bermond A (2010) Application of advanced oxidation processes for TNT removal: a review. Hazard Mater 178:10–28

    Article  CAS  Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyII fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 403:1607–1621

    Article  Google Scholar 

  • Bernstein A, Ronen Z (2012) Biodegradation of the explosives TNT, RDX and HMX. In: Singh SN (ed) Microbial degradation of xenobiotics. Environmental science and engineering, Spring-Verlag, Berlin, Heidelberg, pp 135–176. doi:10.1007/978-3-642-23789-8_5

  • Bryant C, Hubbard L, McElroy WD (1991) Cloning, nucleotide sequence, and expression of the nitroreductase gene from Enterobacter cloacae. J Biol Chem 266:4126–4130

    CAS  PubMed  Google Scholar 

  • Eapen S, Singh S, D’Souza SF (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25:442–451

    Article  CAS  PubMed  Google Scholar 

  • Ekman DR, Lorenz WW, Przybyla AE, Wolfe NL, Dean JFD (2003) SAGE analysis of transcriptome responses in Arabidopsis roots exposed to 2,4,6-trinitrotoluene. Plant Physiol 133:1397–1406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Esteve-Núñez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65:335–352

    Article  PubMed Central  PubMed  Google Scholar 

  • Hannink N, Rosser SJ, French CE, Basran A, Murray JA, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19:1168–1172

    Article  CAS  PubMed  Google Scholar 

  • Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618

    Article  CAS  PubMed  Google Scholar 

  • Khan MI, Lee J, Park J (2013) A toxicological review on potential microbial degradation intermediates of 2,4,6-trinitrotoluene, and its implications in bioremediation KSCE. J Civil Eng 17(6):1223–1231

    Google Scholar 

  • Kobori T, Sasaki H, Lee WC, Zenno S, Saigo K, Murphy MEP, Tanokura M (2001) Structure and site-directed mutagenesis of a flavoprotein from Escherichia coli that reduces nitrocompounds. J Biol Chem 276:2816–2823

    Article  CAS  PubMed  Google Scholar 

  • Mentewab A, Cardoza V, Stewart CN (2005) Genomic analysis of the response of Arabidopsis thaliana to trinitrotoluene as revealed by cDNA microarrays. Plant Sci 168:1409–1424

    Article  CAS  Google Scholar 

  • Moon HM, Subramanian M, Rollo S, Oliver D, Shanks JV (2004) Use of Arabidopsis as a model system for genetic and biochemical studies of TNT transformation in plants. In: Sustainable range management conference, New Orleans

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nepovím A, Hubálek M, Podlipná (2004) In vitro Degradation of 2,4,6 Trinitrotoluene using plant tissue cultures of solanum aviculare and rheum palmatum. Eng Life Sci 4(1):46–49

    Article  Google Scholar 

  • Nipper M, Carr RS, Biedenbach JM, Hooten RL, Miller K, Saepoff S (2001) Development of marine toxicity data for ordnance compounds. Arch Environ Contam Toxicol 41:308–318

    Article  CAS  PubMed  Google Scholar 

  • Nyanhongo GS, Schroeder M, Steiner W, Gubitz GM (2005) Biodegradation of 2,4,6-trinitrotoluene (TNT): an enzymatic perspective Biocatal. Biotransform 23(2):53–69

    Article  CAS  Google Scholar 

  • Panz K, Miksch K (2012) Phytoremediation of explosives (TNT, RDX, HMX) by wild-type and transgenic plants. J Environ Manag 113:85–92

    Article  CAS  Google Scholar 

  • Panz K, Miksch K (2014) Phytoremediation of soil contaminated with explosive compounds. Environ Sci Eng. doi:10.1007/978-319-01083-0_11

    Google Scholar 

  • Peng RH, Huang XM, Li X, Sun AJ, Yao QH, Peng YL (2001) Construction of a plant binary expression vector containing intron-kanamycin gene and transformation in Nicotiana tabacum. Acta Photophysiol Sin 27:55–60

    CAS  Google Scholar 

  • Peng RH, Xiong AS, Yao QH (2006) A direct and efficient PAGE-mediated overlap extension PCR method for gene multiple-site mutagenesis. Appl Microbiol Biotechnol 73:234–240

    Article  CAS  PubMed  Google Scholar 

  • Pennington JC, Brannon JM (2002) Environmental fate of explosives. Thermochim Acta 384:163–172

    Article  CAS  Google Scholar 

  • Ramos JL, Caballero A, Duque E, van Dillewijn P, González-Pérez MM, Esteve-Núñez A (2004) Physiological evidence for respiration of TNT by Pseudomonas sp. JLR11. In: Ramos JL (ed) Pseudomonas. Kluwer Academic/Plenum, London, pp 229–240

  • Robidoux PY, Hawari J, Bardai G, Paquet L, Ampleman G, Thiboutot S, Sunahara GI (2002) TNT, RDX, and HMX decrease earthworm (Eisenia andrei) life-cycle responses in a spiked natural forest soil. Arch Environ Contam Toxicol 43:379–388

    Article  CAS  PubMed  Google Scholar 

  • Rosser SJ, French CE, Bruce NC (2001) Special symposium: engineering plants for the phytodetoxification of explosives. In vitro Cell Dev Biol Plant 37:330–333

    Article  CAS  Google Scholar 

  • Rylott EL, Lorenz A, Bruce NC (2010) Biodegradation and biotransformation of explosives. Curr Opin Biotechnol 22(3):1–7

    Google Scholar 

  • Spain JC (2000) Introduction. In: Spain JC, Hughes JB, Knackmuss HJ (eds) Biodegradation of nitroaromatic compounds and explosives. Lewis, Boca Raton, pp 1–5

    Google Scholar 

  • Symons ZC, Bruce NC (2006) Bacterial pathways for degradation of nitroaromatics. Nat Prod Rep 23(6):845–850

    Article  CAS  PubMed  Google Scholar 

  • Van Aken B (2009) Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Opin Biotechnol 20:231–236

    Article  CAS  PubMed  Google Scholar 

  • Van Aken B, Yoon JM, Just CL, Schnoor JL (2004) Metabolism and mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine inside poplar tissues (Populus deltoides x nigra DN-34). Environ Sci Technol 38:4572–4579

    Article  PubMed  Google Scholar 

  • Vanek T, Nepovim A, Podlipna R, Huebner A, Vavrikova Z, Gerth A, Thomas H, Smrcek S (2006) Phytoremediation of explosives in toxic wastes. In: Twardowska I et al (eds) Soil and water pollution monitoring, protection and remediation. Springer, Netherlands, pp 3–23

    Google Scholar 

  • Vanek T, Gerth A, Vavrikova Z, Podlipna R, Soudek P (2007) Phytoremediation of explosives. In: Marmiroli N, Samotokin B, Marmiroli M (eds) Advanced science and technology for biological decontamination of sites affected by chemical and radiological nuclear agents, vol 75. NATO Science series, Series IV: Earth and environmental sciences, Springer, Dordrecht, pp 209–225

  • Varun M, D’Souza R, Kumar D, Paul MS (2011) Bioassay as monitoring system for lead phytoremediation through Crinum asiaticum L. Environ Monit Assess 178:373–381. doi:10.1007/s10661-010-1696-9

    Article  CAS  PubMed  Google Scholar 

  • Vila M, Lorber-Pascal S, Laurent F (2007) Fate of RDX and TNT in agronomic plants. Environ Pollut 148:148–154

    Article  CAS  PubMed  Google Scholar 

  • Vila M, Lorber-Pascal S, Laurent F (2008) Phytotoxicity to and uptake of TNT by rice. Environ Geochem Health 30:199–203

    Article  CAS  PubMed  Google Scholar 

  • Williams RE, Rathbone DA, Scrutton NS, Bruce NC (2004) Biotransformation of explosives by the old yellow enzyme family of flavoproteins. Appl Environ Microbiol 70(6):3566–3574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong AS, Yao QH, Peng RH, Duan H, Li X, Fan HQ, Cheng ZM, Li Y (2006) PCR-based accurate synthesis of long DNA sequences. Nat Protoc 1:791–797

    Article  CAS  PubMed  Google Scholar 

  • Zaripov SA, Naumov AV, Abdrakhmanova JF, Garusov AV, Naumova RP (2002) Models of 2,4,6-trinitrotoluene (TNT) initial conversion by yeasts. FEMS Microbiol Lett 217(2):213–217

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, Peng RH, Fu XY, Jin XF, Zhao W, Xu j, Han HJ, Gao JJ, Xu ZS, Bian L, Yao QH (2012) Enhanced transformation of TNT by Arabidopsis plants expressing an old yellow enzyme. Plos One 7(7):e39861

  • Ziganshin AM, Naumova RP, Pannier AJ, Gerlach R (2010) Influence of pH on 2,4,6-trinitrotoluene degradation by Yarrowia lipolytica. Chemosphere 79(4):426–433

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by the Key Project Fund of the Shanghai Municipal Committee of Agriculture (zhongzi2013-8, zhongzi2014-2, jizhi2014 1-3), International Scientific and Technological Cooperation (13440701700), Agriculture science technology achievement transformation fund (133919N1300, 143919N0300), National Natural Science Foundation (31071486, 31200212, 31200075, 31200076). Basic research in the field of science and technology project of Science and Technology Commission of Shanghai Municipality (14JC1403602).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ri-He Peng or Quan-Hong Yao.

Additional information

S.-H. You and B. Zhu contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, SH., Zhu, B., Han, HJ. et al. Phytoremediation of 2,4,6-trinitrotoluene by Arabidopsis plants expressing a NAD(P)H-flavin nitroreductase from Enterobacter cloacae . Plant Biotechnol Rep 9, 417–430 (2015). https://doi.org/10.1007/s11816-015-0379-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-015-0379-y

Keywords

Navigation