Skip to main content
Log in

Graphitization of Oak-Tree-Based White Charcoals by High Temperature Heat Treatment

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Oak-tree-based white charcoals were subjected to high-temperature heat treatment at up to 2400 °C to analyze changes in their surface morphology and internal structure using scanning electron microscopy and transmission electron microscopy. When the treatment temperature was increased, micropores became smaller and disappeared, but macropores and mesopores remained, resulting in an increase in average pore size. At treatment temperatures of 2000 °C or higher, all the pores disappeared and the internal structure changed into a dense graphite-like structure. The X-ray diffraction patterns of charcoals heat-treated at 1800 °C or higher in an argon atmosphere exhibited a sharp peak near 2θ = 26.5°, and Raman spectroscopy showed clear D and 2D bands near 1360 and 2680 cm−1, respectively, indicating that carbon graphite crystals were developing. At 2400 °C for 10 min., the interlayer distances (d002 and d100), Lc and La of the graphite crystallites were 0.34, 0.21, 23.00, and 6.13 nm, respectively. The presence of the D band and the IG/(IG + ID) ratio confirmed that the newly developed structure was turbostratic. The Brunauer–Emmett–Teller (BET) adsorption isotherm of the as-received charcoals exhibited peculiar characteristics in which Types I and IV were mixed. This result is due to low-pressure hysteresis, in which nitrogen is embedded in the crevices of charcoal during adsorption and is hardly desorbed during desorption. This low-pressure hysteresis disappeared as increasing the temperature, the adsorption isotherm of charcoal treated at 2400 °C was Type II, and the specific surface area was 8.45 m2/g, indicating that the charcoal was completely transformed to nonporous graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Fontana, Mem. Mat. Fis. Soc. Ital Sci. 1, 679 (1777)

    Google Scholar 

  2. C. W. Scheele, Chemical Observations on Air and Fire, vol. 182 (1780).

  3. N.T. De Saussure, Gilbert’s Ann. 47, 113 (1814)

    Article  Google Scholar 

  4. E. Mitscherlich, Pogg. Ann. 59, 94 (1843)

    Google Scholar 

  5. R.C. Bansal, J.B. Donnet, F. Stoeckli, Active Carbon (Marcel Dekker Inc., New York, 1988), p.vii

    Google Scholar 

  6. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  CAS  Google Scholar 

  7. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306(5696), 666 (2004)

    Article  ADS  PubMed  CAS  Google Scholar 

  8. D.A. Spyker, A. Arch, Intern. Med. 145(1), 43 (1985)

    CAS  Google Scholar 

  9. R. Spector, G.D. Park, West. J. Med. 145, 511 (1986)

    PubMed  PubMed Central  CAS  Google Scholar 

  10. J. Greensher, H.C. Mofenson, T.R. Caraccio, R. Pediatr. 80, 949 (1987)

    CAS  Google Scholar 

  11. Korean Carbon Society, Carbon Materials Application Handbook (Daiyoung Co., Seoul, 2008), p.258

    Google Scholar 

  12. K. Kazuro, A. Mitsuyoshi, A. Atsushi, O. Shinichiro, Tanso 191, 32 (2000)

    Google Scholar 

  13. Y. Takeshi, I. Shigehisa, H. Toshimitsu, Tanso 186, 2 (1999)

    Google Scholar 

  14. H. Toshimitsu, Y. Kenji, K. Emico, I. Yuji, I. Shigehisa, J. Wood Sci. 44, 332 (1998)

    Article  Google Scholar 

  15. T. Hata, T. Vystavel, P. Bronsveld, J. DeHosson, H. Kikuchi, K. Nishimiya, Y. Imamura, Carbon 42(5–6), 961 (2004)

    Article  CAS  Google Scholar 

  16. M. Inagaki, S. Naka, J. Mater. Sci. 10(5), 814 (1975)

    Article  ADS  CAS  Google Scholar 

  17. N. Kasahara, S. Shiraishi, A. Oya, Heterogeneous graphitization of thin carbon fiber derived from phenol-formaldehyde resin. Carbon 41, 1654–1656 (2003)

    Article  CAS  Google Scholar 

  18. K. Okabe, S. Shiraishi, A. Oya, Mechanism of heterogeneous graphitization observed in phenolic resin-derived thin carbon fibers heated at 3000°C. Carbon 42, 667 (2004)

    Article  CAS  Google Scholar 

  19. J.L. Fogg, K.J. Putman, T. Zhang et al., Catalysis-free transformation of non-graphitising carbons into highly crystalline graphite. Commun Mater 1, 47 (2020). https://doi.org/10.1038/s43246-020-0045-y

    Article  Google Scholar 

  20. Y. Katsuyama, Y. Nakayama, H. Kobayashi, Y. Goto, I. Honma, M. Watanabe, Chemsuschem 13, 5762 (2020)

    Article  PubMed  CAS  Google Scholar 

  21. N. Sun, H. Liu, B. Xu, J Mater Chem. A. 3, 20560 (2015)

    Article  ADS  CAS  Google Scholar 

  22. N. Koei, H. Toshimitsu, K. Hikari, I. Yuji, J. Wood Sci. 50, 177 (2004)

    Article  Google Scholar 

  23. D.S. Knight, W.B. White, J. Mater. Res. 4, 385 (1989)

    Article  ADS  CAS  Google Scholar 

  24. J. Ramirez-Rico, C. Gutierrez-Castilla, J. Martinez-Fernandez, V.V. Popov, T.S. Orlova, Mater. Des. 99, 528 (2016)

    Article  CAS  Google Scholar 

  25. Y. Akira, K. Yutaka, H. Yoshihiro, Tanso 221, 2 (2006)

    Google Scholar 

  26. Y. Min, S. Theo, S. Taicao, G. Franceo, J.R. Michael, Materials 11(9), 1588 (2018)

    Article  Google Scholar 

  27. IUPAC, “Manual of symbols and terminology,” Appendix 2, Pt. 1 colloid and surface chemistry. Pure Appl. Chem. 31(4), 577 (1972)

    Article  Google Scholar 

  28. D.H. Everett, J.C. Powl, J. Chem. Soc. Faraday Trans. I. 72, 619 (1976)

    Article  CAS  Google Scholar 

  29. A. Zsigmondy, Anorg. Chem. 71, 356 (1911)

    Article  CAS  Google Scholar 

  30. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60(2), 309 (1938)

    Article  ADS  CAS  Google Scholar 

  31. K.S. An, L.K. Kwak, H.G. Kim, S.K. Ryu, Korean Chem. Eng. Res. 60(2), 1 (2022)

    Google Scholar 

  32. D. A. Cadenhead, D. H. Everett, Proc. Int. Conf. on Carbon and Graphite (Society of Chemical Industry, 1958), p. 272

  33. B. McEnaney, J. Chem. Soc. Faraday Trans. I. 70, 84 (1974)

    Article  CAS  Google Scholar 

  34. V.R. Deitz, E. Berlin, J. Colloid Interface Sci. 44(1), 57 (1973)

    Article  ADS  CAS  Google Scholar 

  35. M.I. Pope, S.J. Gregg, Fuel 39(3), 267 (1960)

    CAS  Google Scholar 

  36. A. Bailey, D.A. Cadenhead, D.H. Davies, D.H. Everett, A.J. Miles, Trans. Faraday Soc. 67, 231 (1971)

    Article  CAS  Google Scholar 

  37. B.C. Lippens, J.H. de Boer, Studies on pore systems in catalysts: the t-method. J. Catalysis 4, 319 (1965)

    Article  CAS  Google Scholar 

  38. G. Horvath, K. Kawazoe, J. Chem. Eng. (Jpn) 16, 470 (1983)

    Article  CAS  Google Scholar 

  39. I. Langmuir, J. Am. Chem. Soc. 40(9), 1361 (1918)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research work described in this article was a part of the basic research project (No.2016R1A6A1A03012069) supported by the National Research Foundation (Ministry of Education). This work also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (No. 2020R1A2C1102174)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Gun Kim.

Ethics declarations

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, YN., Lee, J.J., Kwac, LK. et al. Graphitization of Oak-Tree-Based White Charcoals by High Temperature Heat Treatment. Korean J. Chem. Eng. (2024). https://doi.org/10.1007/s11814-024-00138-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11814-024-00138-w

Keywords

Navigation