Skip to main content
Log in

Numerical Simulations on Thermocapillary Flow on Heated Sinusoidal Topography

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The interaction between thermocapillary flow and substrate geometry is analyzed numerically. Taking surface tension into account, the momentum equation is derived and solved using a commercial FEM solver, COMSOL Multiphysics where the effects of surface tension and surface deflection can be easily incorporated into the momentum equation. In the case that the Marangoni number is close to its critical value, i.e., \({{\text{Ma}}\approx {\text{Ma}}}_{c}\), the strong symmetric thermocapillary flow is observed when the wavelength of topography, \({\lambda }_{T}\), and the wavelength of instability motion, \(\lambda\), are nearly the same. This interesting phenomenon has been called flow-structure resonance. Through the numerical simulations, various flow modes, such as symmetric two-cell and four-cell modes, asymmetric two-cell mode, and oscillatory asymmetric two-cell mode are identified by changing the Marangoni number and wavelength of topography. It is clearly shown that for a certain \({\lambda }_{T}\)-system, the transition from oscillatory mode to steady one is possible by relaxing the previous non-deformable surface condition due to high surface tension, i.e., \({\text{Ca}}\to 0\), here \({\text{Ca}}\) is the capillary number. The present study reveals that the preferred flow mode is the complex function of the various parameters such as the Marangoni number, the Biot number, the wavelength of topography, and the capillary number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. J.-J. Xu, S.H. Davis, Phys. Fluids 26, 2880 (1983)

    Article  ADS  CAS  Google Scholar 

  2. Q. Yang, B.Q. Li, X. Lv, F. Song, Y. Liu, F. Xu, J. Fluid Mech. 919, A29 (2021)

    Article  ADS  CAS  Google Scholar 

  3. P.S. Sanchez, J.M. Ezquerro, J. Fernandez, J. Rodriguez, J. Fluid Mech. (2021). https://doi.org/10.1017/jfm.2020.852

    Article  Google Scholar 

  4. S.J. Weinstein, H.J. Palmer, Capillary hydrodynamics and interfacial phenomena, in Liquid film coating: scientific principles and their technological implications. (Springer, Netherlands, Dordrecht, 1997), pp.19–62

    Chapter  Google Scholar 

  5. A.K. Sen, S.H. Davis, J. Fluid Mech. 121, 163 (1982)

    Article  ADS  CAS  Google Scholar 

  6. T. Gambaryan-Roisman, Adv. Colloid Interface Sci. 222, 319 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. R.F. Ismagilov, D. Rosmarin, D.H. Gracias, A.D. Stroock, G.M. Whitesides, Appl. Phys. Lett. 79, 439 (2001)

    Article  ADS  CAS  Google Scholar 

  8. S. Saprykin, P.M.J. Trevelyan, R.J. Koopmans, S. Kalliadasis, Phys. Rev. E 75, 026306 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Stroock, R.F. Ismagilov, H.A. Stone, G.M. Whitesides, Langmuir 19, 4358 (2003)

    Article  CAS  Google Scholar 

  10. A. Alexeev, T. Gambaryan-Roisman, P. Stephan, Phys. Fluids 17, 062106 (2005)

    Article  ADS  Google Scholar 

  11. Y.O. Kabova, A. Alexeev, T. Gambaryan-Roisman, P. Stephan, Phys. Fluids 18, 012104 (2006)

    Article  ADS  Google Scholar 

  12. J. Yoo, J. Nam, K.H. Ahn, J. Fluid Mech. 859, 992 (2019)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  13. L.G. Leal, Advanced transport phenomena (Cambridge University Press, 2007)

    Book  Google Scholar 

  14. L.E. Scriven, C.V. Sternling, J. Fluid Mech. 19, 321 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  15. D.A. Nield, J. Fluid Mech. 19, 341 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  16. COMSOL, Multiphysics ver. 5.4 (2019)

  17. M.C. Kim, Korean J. Chem. Eng. 38, 144 (2021)

    Article  Google Scholar 

  18. M.C. Kim, P. Pramanik, V. Sharma, M. Mishra, J. Fluid Mech. 917, A25 (2021)

    Article  ADS  CAS  Google Scholar 

  19. J.S. Hong, K.H. Ahn, G.G. Fuller, M.C. Kim, Phys. Fluids 35, 064103 (2023)

    Article  ADS  CAS  Google Scholar 

  20. C.E. Weatherburn, Differential geometry of three dimensions (Cambridge Univ, Press, 1955)

    Google Scholar 

  21. H. Zhou, J.J. Derby, Int. J. Numer. Meth. Fluids 36, 841 (2001)

    Article  CAS  Google Scholar 

  22. M.A. Walkley, P.H. Gaskell, P.K. Jimack, M.A. Kelmansom, J.L. Summers, J. Sci. Comput. 24, 147 (2005)

    Article  MathSciNet  Google Scholar 

  23. R.E. Kelly, D. Pal, J. Fluid Mech. 86, 433 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Chandrsekhar, Hydrodynamic and hydromagnetic stability (Clarendon Press, Oxford, UK, 1961)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the 2023 scientific promotion program funded by Jeju National University.

Funding

This article is funded by Jeju National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Chan Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.C. Numerical Simulations on Thermocapillary Flow on Heated Sinusoidal Topography. Korean J. Chem. Eng. 41, 411–424 (2024). https://doi.org/10.1007/s11814-024-00109-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00109-1

Keywords

Navigation