Skip to main content

Advertisement

Log in

Synthesis of graphene-like material derived from biomass from agricultural waste and its application in Cu (II) removal

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The conversion of biomass from agricultural waste into valuable chemicals and materials is in the need, considering the growing demand for chemicals and materials originating from renewable resources. In this paper the feasibility of graphene-like materials preparation from biomass namely sugarcane bagasse, rice husk, coconut shell, and sawdust using modified Hummers methods was investigated. The application of the graphene-like materials resulting from the process in the Cu (II) removal via adsorption route was also studied. The characterization of samples shows the materials produced from sugarcane bagasse and coconut shells depict the pattern of reduced graphene oxide (rGO), while the materials derived from rise husk and sawdust follow the pattern of graphene. The synthesized graphene-like materials later were used as an adsorbent for Cu (II) removal. The results shows that graphene-like materials from sugarcane bagasse and coconut shells give the highest adsorption reaction kinetics with 19.76 and 19.34 mg/g, respectively, by following the second-order-pseudo model and the adsorption isotherm fitted the Langmuir model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

  1. B. Yu, Y. Zhang, A. Shukla, S. S. Shukla and K. L. Dorris, J. Hazard. Mater., 80(1–3), 33 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. S. Z. N. Ahmad, W. N. Wan Salleh, A. F. Ismail, N. Yusof, M. Z. Mohd Yusop and F. Aziz, Chemosphere, 248, 126008 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. A. Tomczyk, Z. Sokołowska and P. Boguta, Fuel, 278 (2020).

  4. L. Chaabane, E. Beyou, A. El Ghali and M. H. V. Baouab, J. Hazard. Mater., 389, 121839 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. M. Pishnamazi, S. Ghasemi, A. Khosravi, A. ZabihiSahebi, A. Hasan-Zadeh and S. M. Borghei, J. Water Process Eng., 42 (2021).

  6. N. K. Soliman and A. F. Moustafa, J. Mater. Res. Technol., 9, 10235 (2020).

    Article  CAS  Google Scholar 

  7. J. Guerrero-Contreras and F. Caballero-Briones, Mater. Chem. Phys., 153, 209 (2015).

    Article  CAS  Google Scholar 

  8. Y. Seekaew, O. Arayawut, K. Timsorn and C. Wongchoosuk, Carbon-based nanofillers and their rubber nanocomposites, Elsevier, Inc., 259 (2019).

  9. X. J. Lee, B. Y. Z. Hiew, K. C. Lai, L. Y. Lee, S. Gan, S. Thangalazhy-Gopakumar and S. Rigby, J. Taiwan Inst. Chem. Eng., 98, 163 (2019).

    Article  CAS  Google Scholar 

  10. H. Muramatsu, Y. A. Kim, K.-S. Yang, R. Cruz-Silva, I. Toda, T. Yamada, M. Terrones, M. Endo, T. Hayashi and H. Saitoh, Small, 10 (2014).

  11. Y. Li, Q. Du, T. Liu, X. Peng, J. Wang, J. Sun, Y. Wang, S. Wu, Z. Wang, Y. Xia and L. Xia, Chem. Eng. Res. Des., 91(2), 361 (2013).

    Article  CAS  Google Scholar 

  12. T. F. Emiru and D.W. Ayele, Egyptian J. Basic Appl. Sci., 4(1), 74 (2017).

    Article  Google Scholar 

  13. A. Allahbakhsh F. Sharif S. Mazinani and M. R. Kalaee, Int. J. Nano Dimension, 5(1), 11 (2014).

    Google Scholar 

  14. E. H. Sujiono, Zurnansyah, D. Zabrian, M. Y. Dahlan, B. D. Amin, Samnur and J. Agus, Heliyon, 6(8), e04568 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. F. Zulti, K. Dahlan and P. Sugita, Makara J. Sci., 16(3), 163 (2012).

    Google Scholar 

  16. B. Armynah, Atika, Z. Djafar, W. H. Piarah and D. Tahir, J. Phys.: Conf. Ser., 979 (2018).

  17. W. Sudarsono, W. Y. Wong, K. S. Loh, E. H. Majlan, N. Syarif, K.-Y. Kok, R. M. Yunus and K. L. Lim, Int. J. Energy Res., 1 (2019).

  18. M. A. Baqiya, A. Y. Nugraheni, W. Islamiyah, A. F. Kurniawan, M. M. Ramli, S. Yamaguchi, Y. Furukawa, S. Soontaranon, E. G. R. Putra, Y. Cahyono, Risdiana and Darminto, Adv. Powder Technol., 31(5), 2072 (2020).

    Article  CAS  Google Scholar 

  19. F. Fahmi, N. A. A. Dewayanti, W. Widiyastuti and H. Setyawan, Null, 7(1), 1748962 (2020).

    Google Scholar 

  20. B. Li, X. Jin, J. Lin and Z. Chen, J. Clean. Prod., 189, 128 (2018).

    Article  CAS  Google Scholar 

  21. G. Eda, J. Ball, C. Mattevi, M. Acik, L. Artiglia, G. Granozzi, Y. Chabal, T. D. Anthopoulos and M. Chhowalla, J. Mater. Chem., 21(30), 11217 (2011).

    Article  CAS  Google Scholar 

  22. X. Zhang, D. C. Zhang, Y. Chen, X. Z. Sun and Y. W. Ma, Chin. Sci. Bull., 57(23), 3045 (2012).

    Article  CAS  Google Scholar 

  23. P. Singh, J. Bahadur and K. Pal, Graphene J., 6, 61 (2017).

    Article  CAS  Google Scholar 

  24. K. R. Koch and P. F. Krause, J. Chem. Educ., 59(11), 973 (1982).

    Article  CAS  Google Scholar 

  25. Y. Cao and X. Li, Adsorption, 20, 713 (2014).

    Article  CAS  Google Scholar 

  26. W. Peng, H. Li, Y. Liu and S. Song, J. Mol. Liq., 230, 496 (2017).

    Article  CAS  Google Scholar 

  27. W. Wu, Y. Yang and H. Zhou, Water, Air, & Soil Pollut., 224, 1372 (2013).

    Article  Google Scholar 

  28. T. D. Nguyen-Phan, V. H. Pham, E. W. Shin, H. D. Pham, S. Kim, J. S. Chung, E. J. Kim and S. H. Hur, Chem. Eng. J., 170(1), 226 (2011).

    Article  CAS  Google Scholar 

  29. A. Darmawan, L. Karlina, Y. Astuti, J. Motuzas, D. K. Wang and J. C. D. da Costa, J. Non-Cryst. Solids, 447, 9 (2016).

    Article  CAS  Google Scholar 

  30. L. Chen, J. Yang, X. Zeng, L. Zhang and W. Yuan, Mater. Express, 3, 4 (2013).

    Google Scholar 

  31. R. Wang, K. Shi, D. Huang, J. Zhang and S. An, Springer Nature, 9, 18744 (2019).

    CAS  Google Scholar 

  32. X. Mi, G. Huang, W. Xie, W. Wang, Y. Liu and J. Gao, Carbon, 50(13), 4856 (2012).

    Article  CAS  Google Scholar 

  33. A. Saravanan, T. R. Sundararaman, S. Jeevanantham, S. Karishma, P. S. Kumar and P. R. Yaashikaa, Groundwater for Sust. Dev., 11, 100460 (2020).

    Article  Google Scholar 

  34. X. Wang, Y. Pei, M. Lu, X. Lu and X. Du, J. Mater. Sci., 50(5), 2113 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledged the Deputy for Strengthening Research and Development, National Research and Innovation Agency, Indonesia for the financial support No: 187-08/UN7.6.1/PP/2021.

Author information

Authors and Affiliations

Authors

Contributions

Dessy Ariyanti contributed to the study conception and design methodology, analysis, and supervision. material preparation and data collection were performed by Dina Lesdantina. The first draft of the manuscript was written by Dina Lesdantina and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dessy Ariyanti.

Additional information

Statement of Novelty

Agricultural waste biomass is a prospective resource for raw materials for many valuable chemicals and products. The research was undertaken to give alternative routes of the valorization of agricultural waste biomass such as sugarcane bagasse, rice husk, coconut shell, and sawdust into graphene-like materials. By using novel modified Hummers method, the agricultural waste biomass such as coconut shell and sugarcane bagasse can be converted into rGO in the mild operating condition and hence the rGO produced can be used as an adsorbent for Cu II ions removal from wastewater up to 95% within 30 mins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ariyanti, D., Lesdantina, D., Purbasari, A. et al. Synthesis of graphene-like material derived from biomass from agricultural waste and its application in Cu (II) removal. Korean J. Chem. Eng. 40, 964–974 (2023). https://doi.org/10.1007/s11814-023-1380-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1380-8

Keywords

Navigation