Skip to main content
Log in

Mathematical programming model of process plant safety layout using the equipment vulnerability index

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Safety is the focus of attention in plant layout problems. Previous studies have often expressed safety as a cost of risk, that is, the cost of property losses that may occur in an accident. In this paper, the influence of uncertainty on the equipment vulnerability is quantitatively considered and a more reliable process plant layout is proposed. The equipment vulnerability index is used to evaluate the vulnerability level of the target equipment in case of an accident, which is applied to propose a mixed-integer nonlinear optimized process plant layout to minimize domino risk. In addition, a decision matrix is applied to determine whether the risk level of the optimized layout of the target equipment is acceptable. Damage probability and vulnerability are the basic inputs of this matrix. The proposed method was applied to a coal-water slurry gasification process and the results show that the layout obtained by the proposed model has better practical value than the current layout, reducing the domino risk by 53.2%. Meanwhile, the model can be used to identify critical equipment and select targeted safety measures during the production stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Chen, L. Yang, P. H. Zhang and A. Harrison, Energy Strategy Rev., 4, 28 (2014).

    Article  Google Scholar 

  2. L. Wang, F. Yan, F. Wang and Z. Li, Process Saf. Environ. Prot., 149, 299 (2021).

    Article  Google Scholar 

  3. D. I. Patsiatzis, G. Knight and L. G. Papageorgiou, Chem. Eng. Res. Des., 82(5), 579 (2004).

    Article  CAS  Google Scholar 

  4. F. D. Penteado and A.R. Ciric, Ind. Eng. Chem. Res., 35(4), 1354 (1996).

    Article  CAS  Google Scholar 

  5. C. Castell, R. Lakshmanan, J. Skilling and R. Banares-Alcantara, Comp. Chem. Eng., 22, S993 (1998).

    Article  CAS  Google Scholar 

  6. K. Park, D. Shin and W. Won, Korean J. Chem. Eng., 35, 1053 (2018).

    Article  CAS  Google Scholar 

  7. S. Jung, D. Ng, C. Diaz-Ovalle, R. Vazquez-Roman and M. S. Mannan, Ind. Eng. Chem. Res., 50(7), 3928 (2011).

    Article  CAS  Google Scholar 

  8. A. López-Molina, R. Vázquez-Román, M. S. Mannan and M. G. Félix-Flores, J. Loss Prev. Process. Ind., 26(5), 887 (2013).

    Article  Google Scholar 

  9. E. Hollnagel, J. Paries, D. D. Woods and J. Wreathall, Resilience engineering in practice: A guidebook, Ashgate, Farnham, UK (2011).

  10. S. Guha and S. K. Das, Adv. Mater. Res., 917, 232 (2014).

    Article  Google Scholar 

  11. S. Guha and S. K. Das, Int. J. Comp. Sci. Information Technologies, 6(4) (2015).

  12. L. Ed-daoui, A. E. Hami, M. Itmi, N. Hmina and T. Mazri, Saf. Sci., 115, 446 (2019).

    Article  Google Scholar 

  13. S. Cincotta, N. Khakzad, V. Cozzani and G. Reniers, J. Loss Prev. Process. Ind., 59, 82 (2019).

    Article  Google Scholar 

  14. N. Medina-Herrera, A. Jiménez-Gutiérrez and I. E. Grossmann, Comput. Chem. Eng., 68, 165 (2014).

    Article  CAS  Google Scholar 

  15. K. Park, D. Shin and W. Won, Korean J. Chem. Eng., 35, 1053 (2018).

    Article  CAS  Google Scholar 

  16. J. de Lira-Flores, R. Vázquez-Román, A. López-Molina and M. S. Mannan, J. Loss Prev. Process. Ind., 30, 219 (2014).

    Article  Google Scholar 

  17. R. Q. Wang, Y. Wu, Y. F. Wang, X. Feng and M. X. Liu, Comput. Aided Chem. Eng., 47, 89 (2019).

    Article  CAS  Google Scholar 

  18. J. O. Ejeh, S. Liu and L. G. Papageorgiou, Process Saf. Environ. Prot., 148, 137 (2021).

    Article  CAS  Google Scholar 

  19. C. Díaz-Ovalle, R. Vázquez-Román, J. de Lira-Flores and M. S. Mannan, Comput. Chem. Eng., 56, 218 (2013).

    Article  Google Scholar 

  20. J. A. de Lira-Flores, A. López-Molina, C. Gutiérrez-Antonio and R. Vázquez-Román, Process Saf. Environ. Prot., 124, 97 (2019).

    Article  CAS  Google Scholar 

  21. B. Jung and C. J. Lee, Process Saf. Environ. Prot., 132, 285 (2019).

    Article  CAS  Google Scholar 

  22. E. Zarei, N. Khakzad, V. Cozzani and G. Reniers, J. Loss Prev. Process. Ind., 57, 7 (2019).

    Article  Google Scholar 

  23. R. Ferdous, F. Khan, R. Sadiq, P. Amyotte and B. Veitch, Risk Anal., 31, 86 (2011).

    Article  PubMed  Google Scholar 

  24. R. Ferdous, F. Khan, B. Veitch and P. R. Amyotte, Process Saf. Environ. Protect., 87, 217 (2009).

    Article  CAS  Google Scholar 

  25. A. S. Markowski and M. S. Mannan, J. Loss Prev. Process. Ind., 22, 921 (2009).

    Article  Google Scholar 

  26. P. A. M. Uijt de Haag and B. J. M. Ale, Guidelines for Quantitative Risk Assessment (Purplebook), The Hague (NL) (2005).

  27. N. Khakzad, F. Khan, P. Amyotte and V. Cozzani, Risk Analy., 33(2), 292 (2013).

    Article  Google Scholar 

  28. C. Cozzani and E. Salzano, J. Hazard. Mater., 107, 67 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. V. Cozzani, G. Gubinelli, G. Antonioni, G. Spadoni and S. Zanelli, J. Hazard. Mater., 127, 14 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. V. Cozzani, G. Gubinelli and E. Salzano, J. Hazard. Mater., 129(1–3), 1 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. N. Khakzad, G. Reniers, R. Abbassi and F. Khan, Reliab. Eng. Syst. Saf., 154, 127 (2016).

    Article  Google Scholar 

  32. L. Ding, F. Khan and J. Ji, Reliab. Eng. Syst. Saf., 217, 108081 (2022).

    Article  Google Scholar 

  33. N. Khakzad and G. Reniers, Reliab. Eng. Syst. Saf., 143, 63 (2015).

    Article  Google Scholar 

  34. Dow, Dow Fire and Explosion Index hazard Classification Guide (7th ed.). American Institute of Chemical Engineers, New York (1994).

    Google Scholar 

  35. A. Tugnoli, V. Cozzani, F. Khan and P. Amyotte, Domino Effects in the Process Industries, 246 (2013).

  36. G. Landucci, F. Argenti, G. Spadoni and V. Cozzani, J. Loss Prev. Process. Ind., 44, 706 (2016).

    Article  Google Scholar 

  37. N. Khakzad, G. Landucci and G. Reniers, Reliab. Eng. Syst. Saf., 167, 232 (2017).

    Article  Google Scholar 

  38. J. L. Jin, Y. M. Wei and J. Ding, J. Hydraul. Eng., 2, 144 (2004).

    Google Scholar 

  39. T. L. Saaty, Eur. J. Operational Res., 48(1), 9 (1990).

    Article  Google Scholar 

  40. H. Ni, A. Chen and N. Chen, Saf. Sci., 48(10), 1269 (2010).

    Article  Google Scholar 

  41. J. O. Ejeh, S. Liu, M. M. Chalchooghi and L. G. Papageorgiou, Ind. Eng. Chem. Res., 57, 10482 (2018).

    Article  CAS  Google Scholar 

  42. O. Christian, V. Rico-Ramirez and E. O. Castrejón-González, Chem. Eng. Res. Des., 165, 137 (2021).

    Article  Google Scholar 

  43. A. C. van den Berg and A. L. Mos, TNO Prins Maurits Laboratory: Rijswijk, The Netherlands (2005).

  44. C. Castell, R. Lakshmanan, J. Skilling and R. Banares-Alcantara, Comp. Chem. Eng., 22, S993 (1998).

    Article  CAS  Google Scholar 

  45. N. Medina-Herrera, A. Jiménez-Gutiérrez and I. E. Grossmann, Comput. Chem. Eng., 68, 165 (2014).

    Article  CAS  Google Scholar 

  46. CCPS, Guidelines for consequence analysis of chemical releases. New York, New York: Center for chemical process safety of the AIChE (1999).

    Google Scholar 

  47. A. López-Molina, R. Vázquez-Román, M. S. Mannan and M. G. Félix-Flores, J. Loss Prev. Process. Ind., 26(5), 887 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for National project funding for National Natural Science Foundation of China under Grant No. 52074159; Key R & D programs under Grant No. 2018YFC0808500; Key National Natural Science Foundation of China under Grant No. 51834007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhirong Wang.

Additional information

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Wang, Z., Guo, P. et al. Mathematical programming model of process plant safety layout using the equipment vulnerability index. Korean J. Chem. Eng. 40, 727–739 (2023). https://doi.org/10.1007/s11814-022-1357-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1357-z

Keywords

Navigation