Skip to main content

Advertisement

Log in

The temperature effect on the production of liquid and solid fuel via wood pellet torrefaction

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The effects of temperature on the product quality of wood pellet torrefaction were examined by performing experiments, proximate analysis, ultimate analysis, heating value measurement, thermogravimetric analysis, and moisture absorption of torrefied wood pellets at 250, 300, 350, and 400 °C. The liquids produced during torrefaction and high-temperature pyrolysis of torrefied wood pellet at 800 °C were also analyzed. By increasing the torrefaction temperature to 400 °C, the yield of the solid was decreased to 30.32%, with an increase in gas (17.53%) and liquid (52.16%) yield caused by the partial elimination and decomposition of hemicellulose, cellulose, and lignin of wood pellet. The higher heating value of wood pellets was increased from 4,670 kcal/kg for raw wood pellets to 7,480 kcal/kg for torrefied wood pellets at 400 °C with the carbon concentration during torrefaction. Although the carbon density and heating value of the wood pellets were improved, overall energy recovery efficiency was decreased because of the decrease in solid yield by torrefaction. Thermogravimetric analysis results suggested that thermally stable wood pellet formation is formed by the elimination and structural changes to hemicellulose, cellulose, and lignin. The hydrophobicity of wood pellets was increased by torrefaction leading to the elimination of the hydrophilic functional groups of wood pellets. The moisture absorption of wood pellets (14.95%) was also decreased to 5.09% for torrefied wood pellets. Low-temperature torrefaction between 250 and 300 °C produced the typical pyrolyzates of hemicellulose and cellulose, such as furans and acids. The amount of lignin pyrolyzates, such as guaiacol, eugenol, and other phenolics, was increased by applying high-temperature torrefaction at 400 °C. The solid fuel produced by the high-temperature torrefaction of wood pellets also provided a potential decreasing tar content during gasification, indicating the improved process efficiency of torrefied wood pellets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IEA (2021), World Energy Outlook 2021, IEA, Paris https://www.iea.org/reports/world-energy-outlook-2021.

    Google Scholar 

  2. Y. H. Oh, I. Y. Eom, J. C. Joo, J. H. Yu, B. K. Song, S. H. Lee, S. H. Hong and S. J. Park, Korean J. Chem. Eng., 32, 1945 (2015).

    Article  CAS  Google Scholar 

  3. W. H. Chen, J. Peng and X. T. Bi, Renew. Sust. Energ. Rev., 44, 847 (2015).

    Article  CAS  Google Scholar 

  4. C. G. Lee, M. J. Kim and C. D. Eom, BioResources, 17(1), 411 (2022).

    Article  CAS  Google Scholar 

  5. Y. Niu, Y. Lv, Y. Lei, S. Liu, Y. Liang, D. Wang and S. Hui, Renew. Sust. Energ. Rev., 115, 109395 (2019).

    Article  CAS  Google Scholar 

  6. A. E. Eseyin, P. H. Steele, C. U. PittmanJr., K. I. Ekpenyong and B. Soni, Biofuels, 7(1), 20 (2016).

    Article  Google Scholar 

  7. J. Meng, J. Park, D. Tilotta and S. Park, Bioresour. Technol., 111, 439 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. S. U. Lee, K. Jung, G. W. Park, C. Seo, Y. K. Hong, W. H. Hong and H. N. Chang, Korean J. Chem. Eng., 29, 831 (2012).

    Article  CAS  Google Scholar 

  9. L. Kumar, A. A. Koukoulas, S. Mani and J. Satyavolu, Energy Fuels, 31(1), 37 (2017).

    Article  CAS  Google Scholar 

  10. J. S. Jeong, G. M. Kim, H. J. Jeong, G. B. Kim and C. H. Jeon, Trans. Korean Hydrogen New Energy Soc., 30(1), 49 (2019).

    Google Scholar 

  11. T. U. Han, Y. M. Kim, C. Watanabe, N. Teramae, Y. K. Park, S. Kim and Y. Lee, J. Ind. Eng. Chem., 32, 345 (2015).

    Article  CAS  Google Scholar 

  12. Y. M. Kim, J. Jae, B. S. Kim, Y. Hong, S. C. Jung and Y. K. Park, Energy Convers. Manag., 149, 966 (2017).

    Article  CAS  Google Scholar 

  13. A. Anca-Couce, Prog. Energy Combust. Sci., 53, 41 (2016).

    Article  Google Scholar 

  14. J. Wang, B. Shen, D. Kang, P. Yuan and C. Wu, Chem. Eng. Sci., 195, 767 (2019).

    Article  CAS  Google Scholar 

  15. D. Mohan, C. U. PittmanJr. and P. H. Steele, Energy Fuels, 20(3), 848 (2006).

    Article  CAS  Google Scholar 

  16. P. K. Dikshit, H. B. Jun and B. S. Kim, Korean J. Chem. Eng., 37(3), 387 (2020).

    Article  CAS  Google Scholar 

  17. Y. H. Park, J. Kim, S. S. Kim and Y. K. Park, Bioresour. Technol., 100, 400 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. L. Zhu and Z. Zhong, Korean J. Chem. Eng., 37, 1660 (2020).

    Article  CAS  Google Scholar 

  19. P. R. Patwardhan, R. C. Brown and B. H. Shanks, ChemSusChem, 4, 1629 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. H. J. Park, J. I. Dong, J. S. Kim, J. K. Jeon, S. S. Kim, J. Kim, B. Song, J. Park, K. J. Lee and Y. K. Park, Fuel Process. Technol., 90, 186 (2009).

    Article  CAS  Google Scholar 

  21. Y. K. Park, M. L. Yoo, H. W. Lee, S. S. Park, S. C. Kim, S. H. Park and S. C. Jung, Renew. Energy, 42, 125 (2012).

    Article  CAS  Google Scholar 

  22. D. A. Granados, R. A. Ruiz, L. Y. Vega and F. Chejne, Energy, 139, 818 (2017).

    Article  CAS  Google Scholar 

  23. J. Park, J. Meng, K. H. Lim, O. J. Rojas and S. Park, J. Anal. Appl. Pyrolysis, 100, 199 (2013).

    Article  CAS  Google Scholar 

  24. K. Manatura, Case Stud. Therm. Eng., 19, 100623 (2020).

    Article  Google Scholar 

  25. C. R. Lee, J. S. Yoon, Y. W. Suh, J. W. Choi, J. M. Ha, D. J. Suh and Y. K. Park, Catal. Commun., 17, 54 (2012).

    Article  CAS  Google Scholar 

  26. H. J. Park, S. H. Park, J. M. Sohn, J. Park, J. K. Keon, S. S. Kim and Y. K. Park, Bioresour. Technol., 101, S101 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) and Korea Smart Farm R&D Foundation (KosFarm) through Smart Farm Innovation Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) and Ministry of Science and ICT (MSIT), Rural Development Administration (RDA) (421037031HD020), and this work was supported by the Korea Ministry of Environment as Waste to Energy-Recycling Human Resource Development Project (YL-WE-22-001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eun-Suk Jang or Young-Min Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, C., Jang, ES. & Kim, YM. The temperature effect on the production of liquid and solid fuel via wood pellet torrefaction. Korean J. Chem. Eng. 40, 1373–1379 (2023). https://doi.org/10.1007/s11814-022-1305-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1305-y

Keywords

Navigation