Skip to main content
Log in

New understanding of the effect of particle mass loading on the performance of a square cyclone at low and high gas temperatures

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Although particle loading is often assumed to have a significant impact on fluid flow in cyclone separators, the specific effect can be confusing due to a lack of fundamental knowledge of the operating principles. The problem was addressed in this work by numerically analyzing the particle mass loading impact of different sizes on the flow within the square cyclone separator using the computational fluid dynamics (CFD) approach. This type of cyclone is an effective cleaning mechanism for high-temperature gases in a circulating fluidized bed (CFB) boiler. Therefore, it is also critical to investigate the effect of particle mass loading on gas flow at low and high temperatures, which has yet to be taken into account in the literature. Consequently, the current study focuses on this issue as a first step toward developing square cyclones by better understanding the influence of particle concentration on airflow. To describe particle flow, the Eulerian-Lagrangian technique was used to solve the unsteady Reynolds-averaged Navier-Stokes (URANS) equations. The discrete random walk (DRW) was employed to evaluate velocity fluctuations. The results demonstrated that as particle mass loading increased, the sweeping impact of enhanced larger particles caused the smaller particles to flow toward the wall region, increasing particle concentration at the wall region. The particle concentration at the bottom of the square cyclone increased 11 times when the particle mass loading increased from 6.9 to 41.7 g/m3. As the tangential velocity of the gas increased with particle mass loading, more particles accumulated at the bottom of the conical section and remained there for an extended length of time, increasing the chances of their separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CD :

drag coefficient

v :

kinematic viscosity [m2/s]

K:

fluctuating kinetic energy [m2/s2]

ui :

gas velocity [m/s]

gi :

gravitational acceleration [m/s2]

Pf :

fluctuating energy production [m2/s3]

μ :

dynamic viscosity [kg/ms]

ρ :

density [kg/m3]

ρ p :

particle density [kg/m3]

R ij :

Reynolds stress tensor

u pi :

particle velocity [m/s]

t:

time [s]

ε :

turbulence dissipation rate [m2/s3]

v:

velocity [m/s]

dp :

particle diameter [µm]

Rep :

relative Reynolds number

P:

pressure [Pa]

References

  1. S. Venkatesh, M. Sakthivel, S. Sudhagar and S. A. Daniel, Particul. Sci. Technol., 37, 794 (2018).

    Google Scholar 

  2. O. R. Nassaj, D. Toghraie and M. Afrand, Powder Technol., 356, 353 (2019).

    Article  CAS  Google Scholar 

  3. Y. Su, A. Zheng and B. Zhao, Powder Technol., 210, 293 (2011).

    Article  CAS  Google Scholar 

  4. H. Fatahian and E. Fatahian, Iran. J. Chem. Chem. Eng., 41, 670 (2022).

    CAS  Google Scholar 

  5. E. Fatahian, H. Fatahian, E. Hosseini and G. Ahmadi, Powder Technol., 387, 454 (2021).

    Article  CAS  Google Scholar 

  6. N. Malahayati, D. Darmadi, C. Putri, L. Mairiza, W. Rinaldi and Y. Yunardi, Mater. Today-Proc., 63, 318 (2022).

    Article  Google Scholar 

  7. M. Wasilewski, L. Brar and G. Ligus, Sep. Purif. Technol., 239, 116588 (2020).

    Article  CAS  Google Scholar 

  8. H. Safikhani, M. Akhavan-Behabadi, N. Nariman-Zadeh and M. Abadi, Chem. Eng. Res. Des., 89, 301 (2011).

    Article  CAS  Google Scholar 

  9. S. Venkatesh, R. S. Kumar, S. Sivapirakasam, M. Sakthivel, D. Venkatesh and S. Arafath, Powder Technol., 371, 115 (2020).

    Article  CAS  Google Scholar 

  10. M. Wasilewski, L. Brar and G. Ligus, Sep. Purif. Technol., 274, 119020 (2021).

    Article  CAS  Google Scholar 

  11. S. Venkatesh, S. Sivapirakasam, M. Sakthivel, S. Ganeshkumar, M. Prabhu and M. Naveenkumar, Powder Technol., 383, 103 (2021).

    Article  Google Scholar 

  12. H. Safikhani, M. Shams and S. Dashti, Adv. Powder Technol., 22, 359 (2011).

    Article  Google Scholar 

  13. H. Fatahian, E. Fatahian and M. E. Nimvari, Powder Technol., 339, 232 (2018).

    Article  CAS  Google Scholar 

  14. H. Fatahian, E. Hosseini and E. Fatahian, Adv. Powder Technol., 31, 1748 (2020).

    Article  Google Scholar 

  15. A. Raoufi, M. Shams and H. Kanani, Powder Technol., 191, 349 (2009).

    Article  CAS  Google Scholar 

  16. E. Hosseini, J. Brazil. Soc. Mech. Sci. Eng., 42, 1 (2020).

    Article  Google Scholar 

  17. H. Fatahian, E. Fatahian, M. E. Nimvari and G. Ahmadi, Powder Technol., 380, 67 (2021).

    Article  CAS  Google Scholar 

  18. H. Safikhani, M. Rafiee and D. Ashtiani, Adv. Powder Technol., 32, 3268 (2021).

    Article  Google Scholar 

  19. J. Gimbun, T. Chuah, A. Fakhru’l-Razi and T. Choong, Chem. Eng. Process: Process Intens., 44, 7 (2005).

    Article  CAS  Google Scholar 

  20. I. Karagoz and F. Kaya, Int. Commun. Heat Mass., 34, 1119 (2007).

    Article  CAS  Google Scholar 

  21. M. Siadaty, S. Kheradmand and F. Ghadiri, Adv. Powder Technol., 28, 1459 (2017).

    Article  Google Scholar 

  22. E. Yohana, M. Tauviqirrahman, B. Yusuf, K. H. Choi and V. Paramita, Powder Technol., 377, 464 (2021).

    Article  CAS  Google Scholar 

  23. A. N. Huang, N. Maeda, S. Sunada, T. Fukasawa, H. Yoshida, H. Kuo and K. Fukui, Sep. Purif. Technol., 183, 293 (2017).

    Article  CAS  Google Scholar 

  24. A. Jafarnezhad, H. Salarian, S. Kheradmand and J. Khaleghinia, J. Brazil. Soc. Mech. Sci. Eng., 43(2), 1 (2021).

    Article  Google Scholar 

  25. F. Qian, Z. Huang, G. Chen and M. Zhang, Comput. Chem. Eng., 31, 1111 (2007).

    Article  CAS  Google Scholar 

  26. K. W. Chu, B. Wang, D. L. Xu, Y. X. Chen and A. B. Yu, Chem. Eng. Sci., 66, 834 (2011).

    Article  CAS  Google Scholar 

  27. P. Kozołub, A. Klimanek, R. Białecki and W. Adamczyk, Particuology, 31, 170 (2017).

    Article  Google Scholar 

  28. S. Bogodage and A. Y. Leung, J. Hazard. Mater., 311, 100 (2016).

    Article  Google Scholar 

  29. A. N. Huang, K. Ito, T. Fukasawa, K. Fukui and H. Kuo, J. Taiwan Inst. Chem. E., 90, 61 (2018).

    Article  CAS  Google Scholar 

  30. J. Derksen, S. Sundaresan and H. Van den Akker, Powder Technol., 163, 59 (2006).

    Article  CAS  Google Scholar 

  31. G. Wan, G. Sun, X. Xue and M. Shi, Powder Technol., 183, 94 (2008).

    Article  CAS  Google Scholar 

  32. Y. Su and Y. Mao, Chem. Eng. J., 121, 51 (2006).

    Article  CAS  Google Scholar 

  33. K. Elsayed and C. Lacor, Powder Technol., 217, 84 (2012).

    Article  CAS  Google Scholar 

  34. K. Elsayed and C. Lacor, Appl. Math. Model., 35, 1952 (2011).

    Article  Google Scholar 

  35. S. Bogodage and A. Y. Leung, Powder Technol., 286, 488 (2015).

    Article  Google Scholar 

  36. B. Launder, G. Reece and W. Rodi, J. Fluid Mech., 68, 537 (1975).

    Article  Google Scholar 

  37. A. J. Hoekstra, J. Derksen and H. Van Den Akker, Chem. Eng. Sci., 54, 2055 (1999).

    Article  CAS  Google Scholar 

  38. K. Elsayed and C. Lacor, Chem. Eng. Sci., 65, 6048 (2010).

    Article  CAS  Google Scholar 

  39. H. Safikhani, A. Hajiloo and M. Ranjbar, Comput. Chem. Eng., 35, 1064 (2011).

    Article  CAS  Google Scholar 

  40. K. Elsayed and C. Lacor, Comput. Fluids, 68, 134 (2012).

    Article  Google Scholar 

  41. S. A. Morsi and A. J. Alexander, J. Fluid Mech., 55, 193 (1972).

    Article  Google Scholar 

  42. K. Elsayed and C. Lacor, Comput. Fluids, 51, 48 (2011).

    Article  Google Scholar 

  43. F. Parvaz, S. Hosseini, K. Elsayed and G. Ahmadi, Sep. Purif. Technol., 201, 223 (2018).

    Article  CAS  Google Scholar 

  44. C. Song, B. Pei, M. Jiang, B. Wang, D. Xu and Y. Chen, Powder Technol., 294, 437 (2016).

    Article  CAS  Google Scholar 

  45. E. Hosseini, H. Fatahian, G. Ahmadi, M. Eshagh Nimvari and E. Fatahian, J. Brazil. Soc. Mech. Sci. Eng., 43(9), 1 (2021).

    Article  Google Scholar 

  46. M. Wasilewski and L. Brar, Sep. Purif. Technol., 213, 19 (2019).

    Article  CAS  Google Scholar 

  47. M. Shin, H. Kim, D. Jang, J. Chung and M. Bohnet, Appl. Therm. Eng., 25, 1821 (2005).

    Article  Google Scholar 

  48. M. Siadaty, S. Kheradmand and F. Ghadiri, Appl. Therm. Eng., 137, 329 (2018).

    Article  Google Scholar 

  49. H. Erol, O. Turgut and R. Unal, Heat Mass Transfer, 55, 2341 (2019).

    Article  CAS  Google Scholar 

  50. S. Wang, H. Li, R. Wang, X. Wang, R. Tian and Q. Sun, Adv. Powder Technol., 30, 227 (2019).

    Article  CAS  Google Scholar 

  51. Y. Wakizono, T. Maeda, K. Fukui and H. Yoshida, Sep. Purif. Technol., 141, 84 (2015).

    Article  CAS  Google Scholar 

  52. F. Qian, Z. Huang, G. Chen and M. Zhang, Comput. Chem. Eng., 31, 1111 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, E., Fatahian, H. & Fatahian, E. New understanding of the effect of particle mass loading on the performance of a square cyclone at low and high gas temperatures. Korean J. Chem. Eng. 39, 3482–3496 (2022). https://doi.org/10.1007/s11814-022-1205-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1205-1

Keywords

Navigation