Skip to main content
Log in

Dissolution of copper and copper oxide in aqueous solution containing amine or carboxylic acid

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Using a component having an amine group (−NH2) or a carboxyl group (−COOH) for a cleaning solution, the etching rates of copper oxide and copper were analyzed by measuring the solubility of copper to evaluate the etch residue removal properties. Based on this, it was attempted to establish the basis of a cleaning process for removing etch residues in the copper back end of line (BEOL) process. In addition, the etch rate and surface structure change of fluorine-doped fluorosilicate glass (FSG), Black Diamond (BD), and methyl group-doped organosilicate glass (OSG), which are low-k dielectric materials, were analyzed. The copper oxide etching rate of the component having an amine group showed a tendency to increase as the basicity of the solution increased. Also, the solubility of copper oxide in the amine solution decreased with the increase of the carbon length in the amine molecular structure. The solution having a carboxyl group compared to the amine group has a high etching rate for the low-k dielectric material. The amine component showed reactivity only in the basic region and, on the contrary, the carboxyl group component is reactive only in the acidic region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Martinez, Soild State Technol., 37, 26 (1994).

    Google Scholar 

  2. D. Shamiryan, T. Abell, F. Lacopi and K. Maex, Mater. Today, 7, 34 (2004).

    Article  CAS  Google Scholar 

  3. Y. S. Zheng, Q. Guo, Y. J. Su and P. D. Foo, Microelectron. J., 34, 109 (2003).

    Article  CAS  Google Scholar 

  4. D. Lu, R. Kumar, C. K. Chang, A. Y. Du and T. K. S. Wong, Microelectron. Eng., 77, 63 (2005).

    Article  CAS  Google Scholar 

  5. Y. Wang, S. W. Graham, L. Chan and S. Loong, J. Electrochem. Soc., 144, 1522 (1997).

    Article  CAS  Google Scholar 

  6. T. Maruyama, N. Fujiwara, K. Siozawa and M. Yoneda, Jpn. J. Appl. Phys., 35, 2463 (1996).

    Article  CAS  Google Scholar 

  7. J. A. G. Baggerman, R. J. Visser and E. J. H. Collaert, J. Appl. Phys., 75, 758 (1994).

    Article  CAS  Google Scholar 

  8. T. Ohmi, J. Electrochem. Soc., 143, 2957 (1996).

    Article  CAS  Google Scholar 

  9. L. M. Loewenstein and P. W. Mertens, J. Electrochem. Soc., 146, 3886 (1999).

    Article  CAS  Google Scholar 

  10. W. A. Cady and M. Varadarajan, J. Electrochem. Soc., 143, 2064 (1996).

    Article  CAS  Google Scholar 

  11. K. A. Reinhardt and W. Kern, Handbook of silicon wafer cleaning technology, 3rd ed., Elsevier (2018).

  12. N. Venkataraman and S. Raghavan, Microelectron. Eng., 87, 1689 (2010).

    Article  CAS  Google Scholar 

  13. C. K. Ko and W. G. Lee, Korean Chem. Eng. Res., 54, 548 (2016).

    Article  CAS  Google Scholar 

  14. C. K. Ko and W. G. Lee, Korean Chem. Eng. Res., 59, 632 (2021).

    CAS  Google Scholar 

  15. S. C. Sircar and D. R. Wiled, J. Electrochem. Soc., 107, 164 (1960).

    Article  CAS  Google Scholar 

  16. S. Aksu and F. M. Doyle, J. Electrochem. Soc., 149, B340 (2002).

  17. S. C. Sircar and D. R. Wiled, J. Electrochem. Soc., 107, 367 (1960).

    Google Scholar 

  18. M. K. Carter, E. Small, M. Cernat and B. Hansen, J. Electrochem. Soc., 150, B52 (2003).

    Article  CAS  Google Scholar 

  19. Y. F. Wu and T. H. Tsai, Microelect. Eng., 84, 2790 (2007).

    Article  CAS  Google Scholar 

  20. V. R. K. Gorantla, A. Babel, S. Pandija and S. V. Babu, Electrochem. Solid-State Lett., 8, G131 (2005).

    Article  CAS  Google Scholar 

  21. V. Gorantla, D. Goia, E. Matijević and S.V. Babu, J. Electrochem. Soc., 152, G912 (2005).

    Article  CAS  Google Scholar 

  22. S. Aksu and F. M. Doyle, J. Electrochem. Soc., 149, B340 (2002).

    Article  CAS  Google Scholar 

  23. C. K. Ko and W. G. Lee, Surf. Interface Anal., 44, 94 (2012).

    Article  Google Scholar 

  24. C. K. Ko and W. G. Lee, Surf. Interface Anal., 42, 1128 (2010).

    Article  CAS  Google Scholar 

  25. Z. J. Ding, Y. P. Wang, W. J. Liu, S. J. Ding, M. R. Baklanov and D. W. Zhang, J. Phys. D: Appl. Phys., 51, 115103 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work; was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (Grant Number: 2019R1A2C1005445).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Gyu Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, C.K., Lee, W.G. Dissolution of copper and copper oxide in aqueous solution containing amine or carboxylic acid. Korean J. Chem. Eng. 39, 3121–3128 (2022). https://doi.org/10.1007/s11814-022-1200-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1200-6

Keywords

Navigation