Skip to main content

Advertisement

Log in

Phosphonium based ionic liquids: Potential green solvents for separation of butanol from aqueous media

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Depleting conventional resources leads to the development of alternate energy sources as a result of rising energy demand. As a result of its high energy content, bio-butanol is an appealing fuel. Yet, a fermentation method of butanol generation by acetone *butanol*ethanol using solventogenic Clostridium has significant limitations. In addition to repressing microbial movement (normally greater than 10 g/L), it also affects their production. In order to separate butanol from aging broth, various separation techniques can be used. As an alternative to traditional solvents, ionic liquids can be used as novel extractants to counter these problems. In the present paper, separation of butanol (simulated) from aqueous media utilizing typical hydrophobic ionic liquids was studied at 298±1 K. Various parameters, such as distribution coefficent (Kd), extraction efficiency (%η), diffusion coefficient, solvent-to-feed ratio diffusion coefficient, and number of stages necessary for butanol separation, have been studied. Separation of butanol from aqueous solutions (0.25–2.5 wt%)Trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl) amide-CYPHOS IL 109 THTDP [NTF2] ionic liquid, (purity ≥95.0%), Trihexyltetradecylphosphonium chloride-CYPHOS IL 101 THTDP[Cl] (purity ≥95.0%), at ambient conditions (298.15±1 K) was carried out. The average separation efficiency of butanol was observed highest (%E 80.43) with hydrophobic THTDP [NTF2] ionic liquid. The maximum average distribution coefficient (Kd) 11.055 was found for RTIL ionic liquid THTDP [NTF2] compared to THTDP [Cl] ionic liquid. Minimum solvent-to-feed ratio was observed for ionic liquid, THTDP [NTF2], (S/Fmin, 0.3829) and for THTDP [Cl], (S/Fmin, 0.201). Due to excellent/better mixing blending properties with gasoline and diesel fuels, recovery of this prospective butanol by ionic liquid could be utilized in gasoline-driven combustion systems. It would be a more promising alternative to ethanol and gasoline for large-scale applications. Thus, after evaluating the above parameters, it has been determined that butanol would be the most effective renewable biofuel for commercialization using ionic liquids as an extractant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. S. H. Ha, N. L. Mai and Y. M. Koo, Process Biochem., 45, 1899 (2010).

    Article  CAS  Google Scholar 

  2. N. Qureshi and T. C. Ezeji, Biofuels, Bioprod. Bio Refining, 2, 319 (2008).

    Article  CAS  Google Scholar 

  3. B. Williams, m https://www.briangwilliams.us/fossil-fuels-pollution/biobutanol.html. (2016). Accessed on 10 Dec 2021.

  4. G. Merlet, F. Uribe, C. Aravena, M. Rodríguez, R. Cabezas, E. Quijada-Maldonado and J. Romero, J. Membr. Sci., 537, 337 (2017).

    Article  CAS  Google Scholar 

  5. H. Gonzalez-Penas, T. A. Lu-Chau, M. T. Moreira and J. M. Lema, Appl. Microbiol. Biotechnol., 98, 5915 (2014).

    Article  CAS  Google Scholar 

  6. G. M. Awang, W. M. Ingledew and G. A. Jones, Appl. Microbiol. Biotechnol., 38, 12 (1992).

    Article  CAS  Google Scholar 

  7. S. H. Baer, D. L. Bryant and H. P. Blaschek, Appl. Environ. Microbiol., 55, 2729 (1989).

    Article  CAS  Google Scholar 

  8. W. J. Groot, H.S. Soedjak, P. B. Donck, R. G. J. M. Van der Lans, K. C. A. Luyben and J. M. K. Timmer, Bioprocess Eng., 5, 203 (1990).

    Article  CAS  Google Scholar 

  9. K. Schügerl, Springer Sci. & Business Med (2013).

  10. A. Kubiczek and W. Kamiński, Eco. Chem. Eng., 20, 77 (2013).

    CAS  Google Scholar 

  11. K. A. Motghare, N. Rajkumar and K. L. Wasewar, Chem. Data Coll., 21, 100225 (2019).

    CAS  Google Scholar 

  12. K. A. Motghare, D. Shende and K. L. Wasewar, 97, 873 (2021).

    Google Scholar 

  13. K. A. Motghare, K. L. Wasewar and D. Z. Shende, J. Chem. Eng. Data, 64, 5079 (2019).

    Article  CAS  Google Scholar 

  14. L. Y. Garcia-Chavez, C. M. Garsia, B. Schuur and A. B. de Haan, Ind. Eng. Chem. Res., 51, 8293 (2012).

    Article  CAS  Google Scholar 

  15. D. Rabari and T. Banerjee, Fluid Phase Equilib., 355, 26 (2013).

    Article  CAS  Google Scholar 

  16. D. Rabari and T. Banerjee, Ind. Eng. Chem. Res., 53, 18935 (2014).

    Article  CAS  Google Scholar 

  17. M. Stoffers and A. Górak, Sep. Purif. Technol., 120, 415 (2013).

    Article  CAS  Google Scholar 

  18. J. Marták and S. Schlosser, J. Chem. Eng. Data, 61, 2979 (2016).

    Article  Google Scholar 

  19. A. G. Fadeev and M. M. Meagher, Chem. Commun., 3, 295 (2001).

    Article  Google Scholar 

  20. J. G. Huddleston, H. D. Willauer, R. P. Swatloski, A. E. Visser and R. D. Rogers, Chem. Comm., 16, 1765 (1998).

    Article  Google Scholar 

  21. S. Dai, Y. H. Ju and C. E. Barnes, J. Chem. Soc., Dalton Trans., 8, 120 (1999).

    Google Scholar 

  22. J. Taylor, Introduction to error analysis, the study of uncertainties in physical measurements, University Science Books, Sausalito, California (1997).

    Google Scholar 

  23. P. R. Bevington and D. K. Robinson, Data reduction and error analysis, McGraw-Hill, New York (2003).

    Google Scholar 

  24. Y. Beers, Introduction to the theory of error, Addison-Wesley Publish. Comp. Inc., Cambridge (1962)

    Google Scholar 

  25. N. C. Barford, Experimental measurements; precision, error and truth, Addison Wesley Pub. Co., London (1967).

    Google Scholar 

  26. C. E. Hawkins and J. H. Niewahner, Data analysis, graphing and report writing, 1st ed., Mohican Publishing Co., Loudonville, Ohio (1983).

    Google Scholar 

  27. S. L. Meyer, Data analysis for scientists and engineers, John Wiley & Sons, New York (1975).

    Google Scholar 

  28. H. D. Young, Statistical treatment, of experimental data, McGraw-Hill Book Company, New York (1962).

    Google Scholar 

  29. M. G. Freire, P. J. Carvalho, R. L. Gardas, I. M. Marrucho, L. M. Santos and J. A. Coutinho, J. Phys. Chem. B, 112, 1604 (2008).

    Article  CAS  Google Scholar 

  30. M. G. Freire, L. M. Santos, A. M. Fernandes, J. A. Coutinho and I. M. Marrucho, Fluid Phase Equilib., 26, 449 (2007).

    Article  Google Scholar 

  31. C. Wakai, A. Oleinikova, M. Ott and H. Weingärtner, J. Phys. Chem. B, 109, 17028 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Department of Biotechnology, Government of India, INDIA for financial support under project titled Design and synthesis of ionic liquids for separation of Biobutanol form fermentation broth to enhance its production (BT/PR16803/PBD/26/511/2016) (Project Investigator: Dr. Kailas L. WASEWAR).

Funding

This work was supported by Department of Biotechnology, India, (Grant number- BT/PR16803/PBD/26/511/2016) (Project Investigator: Dr. Kailas L. WASEWAR).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Kalyani A. Motghare.

The first draft of the manuscript was written by Kalyani A. Motghare and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Conception of theory and experiments, supervision, data analysis were performed by Dr. Kailas L. Wasewar and Dr. Diwakar Z. Shende.

Corresponding author

Correspondence to Kailas Lachchhuram Wasewar.

Ethics declarations

Not applicable

Additional information

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Consent for Publication

Not applicable

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motghare, K.A., Shende, D.Z. & Wasewar, K.L. Phosphonium based ionic liquids: Potential green solvents for separation of butanol from aqueous media. Korean J. Chem. Eng. 39, 2736–2742 (2022). https://doi.org/10.1007/s11814-022-1159-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1159-3

Keywords

Navigation