Skip to main content
Log in

The modelling of fluidized bed dryer for spherical and non spherical particles

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We designed and modelled a fluidized bed dryer. Based on the literature, modelling of a bed dryer is carried out for two situations: for spherical and non-spherical particles. Two case studies were taken from the literature for modelling the fluidized bed dryer for naphthalene balls and mushroom slices. Fluidized bed dryer design was carried out with respect to diffusivity of the bed materials. Drying characteristics in terms of effective diffusivity were studied for naphthalene balls and mushroom slices using a tapered fluidized bed dryer. The variation of effective diffusivity was obtained with change in inlet air temperature, velocity, thickness of slab and drying time. Experimental effective diffusivity as obtained from literature was compared with model predicted values, provided lower deviations with RMSE of less than 8.28% for spherical naphthalene balls and 0.936% for the mushroom slices. Mass transfer coefficient obtained for naphthalene balls was in the range of 2.1×10−4 to 4.857×10−3m sec−1. The diffusivity constant was evaluated using Fick’s diffusion equation assuming surface moisture in equilibrium with the surrounding atmosphere. The value of diffusivity constant (D0) obtained is 1.828×10−9 m2sec−1 and the value of activation energy (Ea) obtained is 4.523 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Pérez Cortés, Y. R. Aguilera Carvajal, J. P. Vargas Norambuena, J. A. Norambuena Vásquez, J. A. Jarufe Troncoso, J. P. Hurtado Cruz, A. P. Muñoz Lagos and P. P. Jara Muñoz, Chem. Eng. Technol., 44, 1567 (2021).

    Article  Google Scholar 

  2. M. F. Mohideen, B. Sreenivasan, S. A. Sulaiman and V. R. Raghavan, Korean J. Chem. Eng., 29, 862 (2012).

    Article  CAS  Google Scholar 

  3. Y. Choi, S. Maken, S. Lee, E. Chung, J. Park and B. Min, Korean J. Chem. Eng., 24, 288 (2007).

    Article  CAS  Google Scholar 

  4. K. Park, H. Kim, S. Maken, Y. Kim, B. Min and J. Park, Korean J. Chem. Eng., 22, 412 (2005).

    Article  CAS  Google Scholar 

  5. R. Barathiraja, P. Thirumal, G. Saraswathy and I. Rahamathullah, J. Mech. Sci. Technol., 35, 2707 (2021).

    Article  Google Scholar 

  6. D. I. Onwude, N. Hashim, R. B. Janius, N. M. Nawi and K. Abdan, Compr. Rev. Food Sci. Food Saf., 15, 599 (2016).

    Article  Google Scholar 

  7. D. N. Deomore and R. B. Yarasu, Processes, 6, 195 (2018).

    Article  Google Scholar 

  8. N. S. Haron, J. H. Zakaria and M. F. Mohideen Batcha, IOP Conf. Ser. Mater. Sci. Eng., 243, 012 (2017).

    Article  Google Scholar 

  9. S. K. Giri and S. Prasad, J. Food Eng., 78, 512 (2007).

    Article  Google Scholar 

  10. H. Pandey and H. K. Sharma, CBS Publishers & Distributors Pvt Ltd, India (2006).

  11. I. L. Pardeshi, S. Arora and P. A. Borker, Dry. Technol., 27, 288 (2009).

    Article  Google Scholar 

  12. P. Khawas, K. K. Dash, A. J. Das and S. C. Deka, Int. J. Food Eng., 11, 667 (2015).

    Article  Google Scholar 

  13. S. Suherman and E. E. Susanto, IOP Conf. Ser. Mater. Sci. Eng., 543, 012 (2019).

    Article  Google Scholar 

  14. C. Niamnuy and S. Devahastin, J. Food Eng., 66, 267 (2005).

    Article  Google Scholar 

  15. C. Srinivasakannan and N. Balasubramanian, Adv. Powder Technol., 20, 298 (2009).

    Article  Google Scholar 

  16. I. Puspasari, M. Z. M. Talib, W. R. W. Daud and S. M. Tasirin, Dry. Technol., 30, 619 (2012).

    Article  CAS  Google Scholar 

  17. A. Reyes, P. Moyano and J. Paz, Dry. Technol., 25, 581 (2007).

    Article  Google Scholar 

  18. J. Srikiatden and J. S. Roberts, Int. J. Food Prop., 10, 739 (2007).

    Article  CAS  Google Scholar 

  19. R. Aris, Chem. Eng. Sci., 50, 3897 (1995).

    Article  CAS  Google Scholar 

  20. P. S. Price and M. A. Jayjock, Regul. Toxicol. Pharmacol., 51, 15 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya Sanjeeb Mohapatra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, A., Swain, B. & Mohapatra, S.S. The modelling of fluidized bed dryer for spherical and non spherical particles. Korean J. Chem. Eng. 39, 1316–1323 (2022). https://doi.org/10.1007/s11814-021-1043-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-1043-6

Keywords

Navigation