Skip to main content
Log in

Sorption thermodynamics and coupling effect for pervaporative dehydration of acetone through nanoclay and iron nanoparticle-filled copolymer membranes

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Sodium montmorillonite (NaMMT) nanoclay particles were incorporated in-situ in the copolymer matrix of Poly (acrylonitrile-co-ethyl acrylate) during its synthesis from different molar% of acrylonitrile (AN) and ethyl acrylate (EA) monomers by emulsion polymerization. Similar polymerization was also carried out in the presence of iron salts to generate iron nanoparticles (FeNP) in situ in the membrane matrix. The membranes were characterized by FTIR, NMR, molecular weight (Mv), XRD, DTA-TGA, SEM, TEM, EDAX, contact angles for hydrophilicity and mechanical properties. The sorption and permeation of acetone-water binary mixtures through these membranes were analyzed in terms of solvent-solvent and solvent-membranes interaction and also by solvent coupling with Flory-Huggins, ENSIC and six-parameter solution diffusion model. The synthesis variables were optimized with the central composite design (CCD) of response surface methodology (RSM). The filled membranes showed high sorption and pervaporation selectivity for water for dehydration of acetone, while for similar filler loading FeNP-filled membranes showed higher flux and selectivity than NaMMT clay filled membrane. The membrane prepared with AN:EA molar ratio of 5:1 and filled with 2 wt% NaMMT clay showed a flux(kg/m2h)/selectivity of 0.903/125.2, which further increased to 0.937/140 for the same membrane filled with 5 wt% FeNP for 90 wt% feed acetone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Fytas, A. Patkowski, G. Meier and T. Dorfmuller, Macromolecules, 15, 870 (1982).

    Article  CAS  Google Scholar 

  2. I. C. McNeill and M. H. Mohammed, Polym. Degrad. Stab., 48, 189 (1995).

    Article  CAS  Google Scholar 

  3. S. Oswal, M. H. Patel and S. G. Patel, Int. J. Polym. Matter Po., 56, 307 (2007).

    Article  CAS  Google Scholar 

  4. J. Machotov, L. Zárybnick, R. Bačovsk and E. Černošková, Polym. Plast. Technol. Eng., 55, 423 (2015).

    Article  Google Scholar 

  5. A. S. Singha and R. K. Rana, Carbohydr. Polym., 87, 500 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. F. Q. Nie Z. K. Xu, X. J. Huang P. Ye and J. Wu, Langmuir, 19, 9889 (2003).

    Article  CAS  Google Scholar 

  7. S. Choudhury and S. K. Ray, Sep. Purif. Technol., 179, 335 (2017).

    Article  CAS  Google Scholar 

  8. M. Olukman and O. Card, Chem. Eng. Process., 98, 60 (2015).

    Article  CAS  Google Scholar 

  9. P. Das and S. K. Ray, J. Membr. Sci., 507, 81 (2016).

    Article  CAS  Google Scholar 

  10. S. Ray and S. K. Ray, Sep. Sci. Technol., 40, 1583 (2005).

    Article  CAS  Google Scholar 

  11. S. Choudhury and S. K. Ray, Ind. Eng. Chem. Res., 58, 4581 (2019).

    Article  CAS  Google Scholar 

  12. H. S. Samanta, S. K. Ray, P. Das and N. R. Singha, J. Chem. Technol. Biot., 87, 608 (2012).

    Article  CAS  Google Scholar 

  13. H. S. Samanta and S. K. Ray, Sep. Purif. Technol., 146, 176 (2015).

    Article  CAS  Google Scholar 

  14. S. Ray and S. K. Ray, J. Membr. Sci., 270, 73 (2006).

    Article  CAS  Google Scholar 

  15. M. S. Jyothi, J. Environ. Manage., 242, 415 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. P. D. Suhas, R. V. Anjanapura, J. M. Han and T. M. Aminabhavi, RSC Adv., 3(38), 17120 (2013).

    Article  CAS  Google Scholar 

  17. S. P. Dharupaneedi, R. V. Anjanapura, J. M. Han and T. M. Aminabhavi, Ind. Eng. Chem. Res., 53(37), 14474 (2014).

    Article  CAS  Google Scholar 

  18. P. D. Suhas, T. M. Aminabhavi, J. M. Han and A. V. Raghu, RSC Adv., 5(122), 100984 (2015).

    Article  CAS  Google Scholar 

  19. S. H. Chen, R. M. Lioua, C. L. Lai, M. Y. Hunga, M. H. Tsaib and S. L. Huang, Desalination, 234, 221 (2008).

    Article  CAS  Google Scholar 

  20. H. G. Premakshi, A. M. Sajjan, A. A. Kittur and M. Y. Kariduraganavar, J. Appl. Polym. Sci., 41248, 1 (2015).

    Google Scholar 

  21. A. Selim, N. Valentínyi, T. Nagy, A. J. Toth, D. Fozer, E. Haaz and P. Mizsey, Chin. J. Chem. Eng., 27, 1595 (2019).

    Article  CAS  Google Scholar 

  22. S. Chaudhari, Y. S. Kwon, M. J. Moon, M. Y. Shon, S. E. Nam and Y. Park, Bull. Korean Chem. Soc., 11008, 1 (2016).

    Google Scholar 

  23. M. K. Mandal, S. B. Sant and P. K. Bhattacharyaa, Colloids Surf. A: Physicochem. Eng. Asp., 373, 11 (2011).

    Article  CAS  Google Scholar 

  24. M. Sairam, B. V. K. Naidu, S. K. Nataraj, B. Sreedhar and T. M. Aminabhavi, J. Membr. Sci., 283, 65 (2006).

    Article  CAS  Google Scholar 

  25. M. Olukman, O. Sanli and E. K. Solak, Vacuum, 120, 107 (2015).

    Article  CAS  Google Scholar 

  26. G. Dudek, M. Gnus, R. Turczyn, A. Strzelewicz and M. Krasowska, Sep. Purif. Technol., 133, 8 (2014).

    Article  CAS  Google Scholar 

  27. C. Zhao, Z. Jiang, J. Zhao, K. Cao, Q. Zhang and F. Pan, Ind. Eng. Chem. Res., 53, 1606 (2014).

    Article  CAS  Google Scholar 

  28. M. Uno, A. Nakae, J. Sudoh, Y. Hirose and M. Hirata, J. Chem. Eng. Japan, 4, 33 (1971).

    Article  Google Scholar 

  29. Q. Yeang, S. Zein, A. Sulong and S. Tan, Sep. Purif. Technol., 107, 252 (2013).

    Article  CAS  Google Scholar 

  30. D. Mangindaan, G. Shi and T. Chung, J. Membr. Sci., 458, 76 (2014).

    Article  CAS  Google Scholar 

  31. W. Zhang, G. Li, Y. Fang and X. Wang, J. Membr. Sci., 295, 130 (2007).

    Article  CAS  Google Scholar 

  32. Q. Zhao, J. Qian, Q. An, Z. Zhu, P. Zhang and Y. Bai, J. Membr. Sci., 311, 284 (2008).

    Article  CAS  Google Scholar 

  33. J. Li, G. Zhang, J. Shulan, N. Wang and A. Wei, J. Membr. Sci., 415, 745 (2012).

    Article  Google Scholar 

  34. M. Hirata, S. Ohe and K. Nagahama, Computer aided data book of vapor-liquid equilibria, Kodansha Limited, Elsevier Scientific Co. Tokyo (1985).

    Google Scholar 

  35. M. H. V. Mulder and C. A. Smolders, J. Membr. Sci., 17, 289 (1984).

    Article  CAS  Google Scholar 

  36. M. Hana, B. Zhao, X. M. Zhang and W. J. Zhang, Chem. Eng. Process, 47, 245 (2008).

    Article  Google Scholar 

  37. R. Guo, C. Hu, B. Li and Z. Jiang, J. Membr. Sci., 289, 191 (2007).

    Article  CAS  Google Scholar 

  38. E. Favre, Q. T. Nguyen, R. Clement and J. Nrel, J. Membr. Sci., 117, 227 (1996).

    Article  CAS  Google Scholar 

  39. P. Shao and R. Y. M. Huang, J. Membr. Sci., 287, 162 (2007).

    Article  CAS  Google Scholar 

  40. S. B. Kuila and S. K. Ray, Sep. Purif. Technol., 89, 39 (2012).

    Article  CAS  Google Scholar 

  41. M. Villegasa, E. F. C. Vidaurrea, A. C. Habertb and J. C. Gottifredi, J. Membr. Sci., 367, 103 (2011).

    Article  Google Scholar 

  42. D. Y. Godovsky, A. V. Varfolomeev, G. D. Efremova, V. M. Cherepanov, G. A. Kapustin, A. V. Volkov and M. A. Moskvina, Adv. Mater. Opt. Electron., 9, 87 (1999).

    Article  CAS  Google Scholar 

  43. M. A. Hoque, M. R. Ahmed, G. T. Rahman, M. T. Rahman, M. A. Islam, M. A. Khan and M. K. Hossain, Results Phys., 10, 434 (2018).

    Article  Google Scholar 

  44. K. Katsuraya, K. Hatanaka, K. Matsuzaki and M. Minagawa, Polymer, 42, 6323 (2001).

    Article  CAS  Google Scholar 

  45. Y. Wang, L. Xu, M. Wang, W. Pang and X. Ge, Macromolecules, 47, 3901 (2014).

    Article  CAS  Google Scholar 

  46. A. S. Brar, Sunita, Eur. Polym. J., 28(7), 803 (1992).

    Article  CAS  Google Scholar 

  47. X. Liu, Y. Makita, Y. L. Hong and Y. Nishiyama, Macromolecules, 50, 244 (2017).

    Article  CAS  Google Scholar 

  48. M. Kurata and Y. Tsunashima, in Polymer handbook, 4th Ed., J. Brandrup, E. H. Immergut and E. A. Grulle Eds., Wiley (2003).

  49. A. Ju, Y. Yan, D. Wang, J. Luo, M. Ge and M. Li, RSC Adv, 4, 64043 (2014).

    Article  CAS  Google Scholar 

  50. N. Chatterjee, S. Basu, S. K. Palit and M. M. Maiti, J. Polym. Sci., Part B: Polym. Phys., 33, 1705 (1995).

    Article  CAS  Google Scholar 

  51. R. Zahedsheijani, M. Faezipour, A. Tarmian, M. Layeghi and H. Yousefi, Eur. J. Wood Prod., 70, 565 (2012).

    Article  CAS  Google Scholar 

  52. J. Quan, Y. Yu, W. C. Branford, G. R. Williams, D. G. Yu, W. Nei and L. M. Zhu, Colloids Surf. B, 88, 304 (2011).

    Article  CAS  Google Scholar 

  53. A. Lassoued, M. S. Lassoued, B. Dkhil, S. Ammar and A. Gadri, J. Mater. Sci. Mater., 29, 8142 (2018).

    Article  CAS  Google Scholar 

  54. S. M. Pawde and K. Deshmukh, J. Appl. Polym. Sci., 110, 2569 (2008).

    Article  CAS  Google Scholar 

  55. M. Modesti, C. Dall’Acqua, A. Lorenzetti and E. Florian, J. Membr. Sci., 229, 211 (2004).

    Article  CAS  Google Scholar 

  56. S. B. Kuila and S. K. Ray, Chem. Eng. Res. Des., 91, 377 (2013).

    Article  CAS  Google Scholar 

  57. J. Ren and C. Jiang, J. Membr. Sci., 140, 221 (1998).

    Article  CAS  Google Scholar 

  58. A. Jonquières, L. Perrin, S. Arnold, R. Clément and P. Lochon, J. Membr. Sci., 174, 255 (2000).

    Article  Google Scholar 

  59. E. Drioli, S. Zhan and A. Basile, J. Membr. Sci., 81, 43 (1993).

    Article  CAS  Google Scholar 

  60. D. P. Suhas, T. M. Aminabhavi and A. V. Raghu, Appl. Clay Sci., 101, 419 (2014).

    Article  CAS  Google Scholar 

  61. W. R. Berendsen, P. Radmer and M. Reuss, J. Membr. Sci., 280, 684 (2006).

    Article  CAS  Google Scholar 

  62. S. Marx, P. V. Gryp, H. Neomagus, R. Everson and K. Keizer, J. Membr. Sci., 209, 353 (2002).

    Article  CAS  Google Scholar 

  63. H. S. Samanta and S. K. Ray, Sep. Purif. Technol., 143, 52 (2015).

    Article  CAS  Google Scholar 

  64. G. A. Polotskaya, Y. P. Kuznetsov, M. Y. Goikhman, I. V. Podeshvo, T. A. Maricheva and V. V. Kudryavtsev, J. Appl. Polym. Sci., 89, 2361 (2003).

    Article  CAS  Google Scholar 

  65. T. Tago, Y. Nakasaka, A. Kayoda and T. Masuda, Micropor. Mesopor. Mater., 115, 176 (2008).

    Article  CAS  Google Scholar 

  66. A. Urtiaga, C. Casado, C. Aragoza and I. Ortiz, Sep. Sci. Technol., 38, 3473 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samit Kumar Ray.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2021_907_MOESM1_ESM.pdf

Sorption thermodynamics and coupling effect for pervaporative dehydration of acetone through nanoclay and iron nanoparticle-filled copolymer membranes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhury, S., Ray, S.K. Sorption thermodynamics and coupling effect for pervaporative dehydration of acetone through nanoclay and iron nanoparticle-filled copolymer membranes. Korean J. Chem. Eng. 39, 529–547 (2022). https://doi.org/10.1007/s11814-021-0907-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0907-0

Keywords

Navigation