Skip to main content

Advertisement

Log in

Techno-economic and environmental feasibility of mineral carbonation technology for carbon neutrality: A Perspective

  • Invited Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Although various CO2 capture and utilization (CCU) technologies are being researched and developed intensively for the purpose of lowering greenhouse gas emissions, most current technologies remain at low technology readiness levels for industrial use and are less economical compared to conventional processes. Mineral carbonation is a CO2 utilization technology with low net CO2 emissions and high CO2 reduction potential, and various commercialization studies are underway around the world. This manuscript reviews the potential of mineral carbonation as a general CCU technology and the techno-economic and environmental feasibility of a representative technology, which produces sodium bicarbonate through the saline water electrolysis and carbonation steps, and examines the potential CO2 reduction derived from the application of this technology. The future implementation of mineral carbonation technology in ocean alkalinity enhancement for sequestrating atmospheric CO2 or the production of abandoned mine backfill materials is also discussed in order to deploy the technology at much larger scales for a meaningful contribution to the reduction of greenhouse gas emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Mazzotti, J. C. Abanades, R. Allam, K. S. Lackner, F. Meunier, E. Rubin, J. C. Sanchez, K Yogo and R. Zevenhoven, Mineral carbonation and industrial uses of carbon dioxide, in IPCC special report on carbon diox-ide capture and storage, 319 (2005).

  2. C. Song, Catal. Today, 115, 10 (2006).

    Article  Google Scholar 

  3. P. Brinckerhoff, Accelerating the uptake of CCS: Industrial use of captured carbon dioxide, Global CCS Institute (2011).

  4. W. Day, Capture technologies: mineralisation. International symposium on the Sustainable Use of Low Rank Coals, Melbourne (2010).

  5. Long Term Residue Management Strategy, ALCOA (2012).

  6. S. B. AI Yablonsky and David Legere, Decision Point 1 Topical Report, Skyonic Corporation (2013).

  7. C.-H. Huang and C.-S. Tan, Aerosol Air Quality Res., 14, 2 (2014).

    Google Scholar 

  8. S.-Y. Pan, A. Chiang, E-E. Chang, Y.-P. Lin, H. Kim and P.-C. Chiang, Aerosol Air Quality Res., 15, 1072 (2015).

    Article  CAS  Google Scholar 

  9. J. H. Lee, J. H. Lee, I. K. Park and C. H. Lee, J. CO2Utilization, 26, 522 (2018).

    Article  CAS  Google Scholar 

  10. Putting CO2to use: Creating value from emission, IEA (2019).

  11. J. H. Lee, D. W Lee, C.-Y. Kwak, K.-J. Kang and J. H. Lee, Ind. Eng. Chem. Res., 58, 34 (2019).

    Article  Google Scholar 

  12. CO2/Sodium bicarbonate project, Available from: https://www.twence.com.

  13. Large volume solid inorganic chemicals family: Process BREF for soda ash, European Soda Ash Producers Association (2004).

  14. G. Steinhauser, J. Cleaner Production, 16, 7 (2008).

    Article  Google Scholar 

  15. J. H. Lee, I. K. Park, D. Duchesne, L. Chen, C. H. Lee and J. H. Lee, J. CO2Utilization, 41, 1 (2020).

    Article  Google Scholar 

  16. S. Lindskog and Joseph E. Coleman, Proceedings of the National Academy of Sciences, 70, 9 (1973).

    Article  Google Scholar 

  17. S. Zhang, Z. Zhang, Y. Lu, M. Rostam-Abadi and A. Jones, Bioresour. Technol., 102, 10194 (2011).

    Article  CAS  Google Scholar 

  18. A. C. Pierre, Int. Sch. Res. Notices, 2012, 1 (2012).

    Article  Google Scholar 

  19. Y. E. Hwang, K. Kim, H. Seo and D. Y. Koh, ACS Sustain. Chem. Eng., 8, 41 (2020).

    Google Scholar 

  20. J. H. Lee, Techno-economic and environmental evaluation of CO2 mineralization technology based on bench scale experiment, Ph.D. Dissertation, KAIST (2021).

  21. M. M. Al Saadi, E. M. Al Harrsi, Y. G. Mushafri, A. Y. Al Farsi and G. J. Al Maharsi, Global J. Eng. Sci., 1, 3 (2019).

    Google Scholar 

  22. J. Chlistunoff, Final technical report-advanced chlor-alkali technology, Los Alamos National Laboratory (2004).

  23. I. K. Park, C.-Y. Ahn, J. H. Lee, D. W. Lee, C. H. Lee, Y.-H. Cho and Y.-E. Sung, Int. J. Hydrogen Energy, 44, 31 (2019).

    Google Scholar 

  24. L. Lipp, S. Gottesfeld and J. Chlistunoff, J. Appl. Electrochem., 35, 10 (2005).

    Article  Google Scholar 

  25. I. Moussallem, J. Jörissen, U. Kunz, S. Pinnow and T. Turek, J. Appl. Electrochem., 38, 9 (2008).

    Article  Google Scholar 

  26. S. Eggleston, L. Buendia, K. Miwa, T. Ngara and K. Tanabe, IPCC guidelines for national greenhouse gas inventories (2019).

  27. Y.-K. Cho, S.-Y. Nam, Y.-M. Lee, C.-S. Kim, S.-S. Seo, S.-H. Jo, H.-W. Lee and J.-W. Ahn, J. Environm. Sci. Int., 26, 11 (2017).

    Article  Google Scholar 

  28. J.-H. Seo, C.-S. Baek, Y.-J. Kim, M.-K. Choi, K.-H. Cho and J.-W. Ahn, J. Energy Eng., 26, 1 (2017).

    Article  Google Scholar 

  29. J. G. Jang, S. Ji and J.-W. Ahn, J. Korean Inst. Resources Recycling, 26, 2 (2017).

    Article  Google Scholar 

  30. J.G. Jang, J.H. Dae, G. H. Lee, H. J. Lee, J. S. Kim and S. H. Jeong, Economic Evaluation and Commercialization Plan of CO2 Mineralization Technology, Science and Technology Policy Institute (2019).

  31. P. Renforth and G. Henderson, Rev. Geophys., 55, 3 (2017).

    Article  Google Scholar 

  32. H. S. Kheshgi, Energy, 20, 9 (1995).

    Article  Google Scholar 

  33. G. H. Rau, Environm. Sci. Technol., 45, 3 (2011).

    Article  Google Scholar 

  34. J. Lee, M. Park, J. Joo and J.-W. Gil, J. Korean Soc. Environm. Engineers, 39, 3 (2017).

    Google Scholar 

  35. E. S. Rubin, J. E. Davison and H. J. Herzog, Int. J. Greenhouse Gas Control, 40, 378 (2015).

    Article  CAS  Google Scholar 

  36. J. H. Lee, N. S. Kwak, H. Niu, J. Wang, S. Wang, H. Shang and S. Gao, Korean Chem. Eng. Res., 58, 1 (2020).

    Google Scholar 

Download references

Acknowledgement

This works was supported by the Carbon-to-X (C2X) R&D project (project no. 2020M3H7A1096361) sponsored by the National Research Foundation (NRF) of the Ministry of Science and ICT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Hyung Lee.

Additional information

Jay H. Lee is currently a KEPCO Chair Professor at Korea Advanced Institute of Science and Technology (KAIST). He is also the director of Saudi Aramco-KAIST CO2 Management Center. He received the AIChE CAST Computing in Chemical Engineering Award and was elected as an IEEE Fellow, an IFAC Fellow, and an AIChE Fellow. He was the 29th Roger Sargent Lecturer in 2016. He published over 200 manuscripts in SCI journals with more than 17,000 Google Scholars citations. His research interests are in the areas of state estimation, model predictive control, planning/scheduling, and reinforcement learning with applications to energy systems and carbon management systems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Lee, J.H. Techno-economic and environmental feasibility of mineral carbonation technology for carbon neutrality: A Perspective. Korean J. Chem. Eng. 38, 1757–1767 (2021). https://doi.org/10.1007/s11814-021-0840-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0840-2

Keywords

Navigation