Skip to main content
Log in

Influence of frictional packing limit on hydrodynamics and performance of gas-solid fluidized beds

  • Fluidization
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The influence of frictional packing limit (FPL) on prediction of hydrodynamics and performance of fluidized bed reactors was studied. Dense gas-solid flows in non-reactive (under isothermal cold and at elevated temperatures) and reactive atmospheres (fluidized bed gasifier) were simulated using Eulerian-Eulerian methodology considering a range of values for FPL. Simulations under cold flow conditions were conducted to establish a range of FPL values that provides physically realistic predictions. It is noticed that bed pressure drop increases with increasing value of FPL when superficial gas velocity (U) is less than or equal to the minimum fluidization velocity. For larger values of U, predicted pressure drop is unaffected by the choice of value of FPL. However, in these cases, the distribution of particles, their velocities and bubbling behavior are significantly affected by FPL. Effect of FPL at elevated temperatures is similar to the one observed at cold flow conditions. It is further noticed that FPL not only affects the predictions on bed hydrodynamics but also has profound influence on reactive flow characteristics such as bed temperature and product gas composition. Sensitivity analysis under cold flow conditions could reveal better predictions when the ratio of FPL to close packing limit is chosen between 0.9 and 0.97.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CD :

standard drag coefficient

ds :

particle diameter [m]

ess :

particle-particle restitution coefficient

\(\overline g \) :

gravity vector [m/s2]

g0 :

radial distribution function

Ksg :

interphase momentum exchange coefficient [kg/m3-s]

L:

length or height of the fixed bed [m]

Pfr :

frictional pressure [Pa]

ps :

solids pressure [Pa]

Ss :

source term

t:

time [s]

\({\overline {\rm{v}} _g}\) :

gas velocity vector [m/s]

\({\overline {\rm{v}} _{\rm{s}}}\) :

solids phase velocity vector [m/s]

α g :

volume fraction of gas or voidage

α g, mf :

bed voidage at minimum fluidization conditions

α s :

volume fraction of solids phase

α s, max :

maximum value of solids volume fraction or close packing limit

α s, min :

threshold value of solids volume fraction at which frictional stress become significant

θ s :

granular temperature [m2/s2]

λ s :

solids bulk viscosity [kg/m-s]

μ s :

solids viscosity [kg/m-s]

μ s, col :

collisional part of solids viscosity [kg/m-s]

μ s, fr :

frictional part of solids viscosity [kg/m-s]

μ s, kin :

kinetic part of solids viscosity [kg/m-s]

ρ s :

density of the solids phase [kg/m3]

\({\overline{\overline \tau } _{\rm{s}}}\) :

particle phase stress tensor [N/m2]

∅:

angle of internal friction

s :

particle sphericity

CPL:

close packing limit

FPL:

frictional packing limit

FPM:

frictional pressure model

KTGF:

kinetic theory of granular flows

MGAS:

METC gasifier advanced simulation

References

  1. S. P. Shi, S. E. Zitney, M. Shahnam, M. Syamlal and W A. Rogers, J. Energy Inst., 79, 217 (2006).

    Article  CAS  Google Scholar 

  2. C. Hu, K. Luo, S. Wang, L. Sun and J. Fan, Chem. Eng. Sci., 195, 693 (2019).

    Article  CAS  Google Scholar 

  3. M. Mehrabadi, E. Murphy and S. Subramaniam, Chem. Eng. Sci., 152, 199 (2016).

    Article  CAS  Google Scholar 

  4. A. K. Sahu, V. Raghavan and B. V. S. S. S. Prasad, Adv. Powder Technol., 30, 3050 (2019).

    Article  CAS  Google Scholar 

  5. J. Musser and J. Carney, Theoretical review of the MFIX fluid and two-fluid models, DOE/NETL-2020/2100; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV (2020).

    Book  Google Scholar 

  6. P. Jop, Y. Forterre and O. Pouliquen, Nature, 441, 727 (2006).

    Article  CAS  Google Scholar 

  7. M. Ferzaneh, A. E. Almstedt, F. Johnsson, D. Pallares and S. Sasic, Powder Technol., 270, 68 (2015).

    Article  Google Scholar 

  8. D. G. Schaeffer, J. Differential Equations, 66, 19 (1987).

    Article  Google Scholar 

  9. A. Srivastava and S. Sundaresan, Powder Technol., 129, 72 (2003).

    Article  CAS  Google Scholar 

  10. P. C. Johnson and R. Jackson, J. Fluid Mech., 176, 67 (1987).

    Article  CAS  Google Scholar 

  11. P. C. Johnson, P. Nott and R. Jackson, J. Fluid Mech., 210, 501 (1990).

    Article  CAS  Google Scholar 

  12. L. M. Armstrong, PhD Thesis, Faculty of Engineering and the Environment School of Engineering Sciences, University of Southampton (2011).

  13. M. Syamlal, W Rogers and T. J. O’Brien, MFIX documentation: Theory guide, National technical information service, Springfield, VA, DOE/METC-9411004, NTIS/DE9400087, Vol. 1 (1993).

  14. G. I. Tardos, Powder Technol., 92, 61 (1997).

    Article  CAS  Google Scholar 

  15. Y. T. Makkawi, P. C. Wright and R. Ocone, Powder Technol., 163, 69 (2006).

    Article  CAS  Google Scholar 

  16. S. Benyahia, Ind. Eng. Chem. Res., 47, 8926 (2008).

    Article  CAS  Google Scholar 

  17. L. M. Armstrong, S. Gu and K. H. Luo, Chem. Eng. J., 168, 848 (2011).

    Article  CAS  Google Scholar 

  18. W. Shuyan, L. Xiang, L. Huilin, Y. Long, S. Dan, H. Yurong and D. Yonglong, Powder Technol., 196, 184 (2009).

    Article  Google Scholar 

  19. A. Passalacqua and L. Marmo, Chem. Eng. Sci., 160, 2795 (2009).

    Article  Google Scholar 

  20. S. H. Hosseini, G. Ahmadi, B. S. Razavi and W. Zhong, Energy Fuels, 24, 6086 (2010).

    Article  CAS  Google Scholar 

  21. M. R. Rahimi, N. Azizi, S. H. Hosseini and G. Ahmadi, Korean J. Chem. Eng., 30, 761 (2013).

    Article  CAS  Google Scholar 

  22. A. K. Sahu, V. Raghavan and B. V. S. S. S. Prasad, Prog. Comput. Fluid Dy., 17, 180 (2017).

    Article  Google Scholar 

  23. A. K. Sahu, V. Raghavan and B. V. S. S. S. Prasad, Int. J. Therm. Sci., 124, 387 (2018).

    Article  Google Scholar 

  24. C. K. K. Lun, S. B. Savage, D. J. Jefferey and N. Chepurniy, J. Fluid Mech., 140, 223 (1984).

    Article  Google Scholar 

  25. T. Mckeen and T. Pugsley, Powder Technol., 129, 139 (2003).

    Article  CAS  Google Scholar 

  26. D. Kunii and O. Levenspiel, Fluidization engineering, 2nd Ed., Butterworth-Heinemann, U.S.A. (1991).

    Google Scholar 

  27. D. Escudero, MSc. Thesis, Department of Mechanical Engineering, Iowa State University, Ames, IA (2010).

  28. J. A. England, M. S. Thesis, Virgina Polytechnic Institute and State University, Blacksburg VA, USA (2011).

  29. M. Jiliang, C. Xioping and L. Daoyin, Powder Technol., 235, 271 (2013).

    Article  Google Scholar 

  30. J. S. M. Botterill, Y. Teoman and K. R. Yuregir, Powder Technol., 31, 101 (1982).

    Article  CAS  Google Scholar 

  31. D. C. Chitester, R. M. Kornosky, L. S. Fan and J. P. Danko, Chem. Eng. Sci., 39, 253 (1984).

    Article  CAS  Google Scholar 

  32. A. D. Engelbrecht, B. C. North, B. O. Oboirien, R. C. Everson and H. W. P. J. Neomagus, in: Proc. Industrial Fluidization, South Africa (IFSA 2011), 145 (2011).

  33. L. Huilin and D. Gidaspow, Chem. Eng. Sci., 58, 3777 (2003).

    Article  Google Scholar 

  34. M. Syamlal and L. A. Bissett, National technical information service, Springfield, DOE/METC-92/4104, DE92 00 1111 (1992).

  35. M. L. de Souza-Santos, Fuel, 68, 1507 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors gratefully acknowledge the computational facility provided by P.G. Senapathy Centre for Computing Resources and National Centre for Combustion Research and Development at Indian Institute of Technology Madras, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilesh Kumar Sahu.

Additional information

Conflict of Interest Statement

The authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, A.K., Raghavan, V. & Prasad, B. Influence of frictional packing limit on hydrodynamics and performance of gas-solid fluidized beds. Korean J. Chem. Eng. 37, 2368–2383 (2020). https://doi.org/10.1007/s11814-020-0660-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0660-9

Keywords

Navigation