Skip to main content
Log in

Superwetting TiO2-decorated single-walled carbon nanotube composite membrane for highly efficient oil-in-water emulsion separation

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

With the advantages of one-dimensional hollow structure, high porosity and prominent mechanical strength, single-walled carbon nanotubes (SWCNTs) have been extensively utilized to improve conventional filtration membranes for oil/water separation. Their intrinsic hydrophobicity, however, adversely affects the anti-fouling performance of the SWCNT membrane. Herein, a super-hydrophilic and underwater super-oleophobic hierarchical modified membrane with enhanced permeability and anti-fouling property was fabricated using the vacuum-assisted filtration technique by synergistically assembling SWCNTs and titanium dioxide (TiO2) nanoparticles on a cellulose acetate membrane. Highly dispersed SWCNTs were obtained by carboxylating treatment of agglomerate SWCNTs. The controlled stacking of SWCNTs fibers and a controllable amount of TiO2 rendered a modified membrane with high porosity and hierarchical structure, leading to an ultrahigh water flux up to 4,777.07 L·m−2·h−1, and excellent separation performance with efficiency greater than 99.47%. Most importantly, the membrane exhibited excellent anti-fouling ability during ten cycles with the aid of the super-wetting property of TiO2 nanoparticles. The results indicated that coating TiO2 nanoparticles on SWCNTs modified the surface topography of the obtained SWCNT/TiO2 membrane, which improved hydrophilicity, permeability and anti-fouling property, manifesting attractive potential applications in oil/water separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Zhang, Y. Zhu, X. Liu, D. Wang, J. Li, L. Jiang and J. Jin, Angew. Chem., 53, 856 (2014).

    CAS  Google Scholar 

  2. X. Yue, J. Li, T. Zhang, F. Qiu, D. Yang and M. Xue, Chem. Eng. J., 328, 117 (2017).

    CAS  Google Scholar 

  3. S. Zhang, P. Wang, X. Fu and T. S. Chung, Water Res., 52, 112 (2014).

    CAS  PubMed  Google Scholar 

  4. P. Kajitvichyanukul, Y. T. Hung and L. K. Wang, Handbook of environmental engineering, Humana Press, Totowa (2011).

    Google Scholar 

  5. M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Mariñas and A. M. Mayes, Nature, 452, 301 (2008).

    CAS  PubMed  Google Scholar 

  6. Z. Li, T. Shi, T. Zhang, Q. Guo, F. Qiu, X. Yue and D. Yang, Korean J. Chem. Eng., 36, 92 (2019).

    CAS  Google Scholar 

  7. X. Hu, Y. Yu, J. Zhou, Y. Wang, J. Liang, X. Zhang, Q. Chang and L. Song, J. Membr. Sci., 476, 200 (2015).

    CAS  Google Scholar 

  8. A. K. Fard, T. Rhadfi, G. Mckay, M. Al-marri, A. Abdala, N. Hilal and M. A. Hussien, Chem. Eng. J., 293, 90 (2016).

    Google Scholar 

  9. B. Das, B. Chakrabarty and P. Barkakati, Korean J. Chem. Eng., 34, 2559 (2017).

    CAS  Google Scholar 

  10. C. Ong, Y. Shi, J. Chang, F. Alduraiei, N. Wehbe, Z. Ahmed and P. Wang, Sep. Purif. Technol., 227, 115657 (2019).

    CAS  Google Scholar 

  11. B. Chakrabarty, A. K. Ghoshal and M. K. Purkait, J. Membr. Sci., 325, 427 (2008).

    CAS  Google Scholar 

  12. F. Zhang, W. Zhang, Z. Shi, D. Wang, J. Jin and L. Jiang, Adv. Mater., 25, 4192 (2013).

    CAS  PubMed  Google Scholar 

  13. W. Zhang, N. Liu, Y. Cao, X. Lin, Y. Liu and L. Feng, Adv. Mater. Interfaces, 4, 1600029 (2017).

    Google Scholar 

  14. V. Rajakovic-Ognjanovic, G. Aleksic and L. Rajakovic, J. Hazard. Mater., 154, 558 (2008).

    CAS  PubMed  Google Scholar 

  15. L. Liu, J. Lei, L. Li, R. Zhang, N. Mi, H. Chen, D. Huang and N. Li, Mater. Lett., 195, 66 (2017).

    CAS  Google Scholar 

  16. Z. Wang, D. Wang, Z. Li and Y. Wang, Cellulose, 27, 2427 (2016).

    Google Scholar 

  17. R. Liu, X. Li, H. Liu, Z. Luo, J. Ma, Z. Zhang and Q. Fu, RSC Adv., 6, 30301 (2016).

    CAS  Google Scholar 

  18. A. Salahi, T. Mohammadi, R. M. Behbahani and M. Hemmati, Korean J. Chem. Eng., 32, 1101 (2015).

    CAS  Google Scholar 

  19. L. Wang, S. Ji, N. Wang, R. Zhang, G. Zhang and J. R. Li, J. Membr. Sci., 452, 143 (2014).

    CAS  Google Scholar 

  20. A. K. Basumatary, R. V. Kumar, A. K. Ghoshal and G. Pugazhenthi, J. Membr. Sci., 475, 521 (2015).

    CAS  Google Scholar 

  21. H. Adib, S. Hassanajili, M. R. Sheikhi-Kouhsar, A. Salahi and T. Mohammadi, Korean J. Chem. Eng., 32, 159 (2015).

    CAS  Google Scholar 

  22. L. Du, X. Quan, X. Fan, S. Chen and H. Yu, Sep. Purif. Technol., 210, 891 (2019).

    CAS  Google Scholar 

  23. A. K. Kota, G. Kwon, W. Choi, J. M. Mabry and A. Tuteja, Nat. Commun., 3, 1025 (2012).

    PubMed  Google Scholar 

  24. F. Li, R. Gao, T. Wu and Y. Li, J. Membr. Sci., 543, 163 (2017).

    CAS  Google Scholar 

  25. M. B. Ghandashtani, F. Z. Ashtiani, M. Karimi and A. Fouladitajar, Appl. Surf. Sci., 349, 393 (2015).

    CAS  Google Scholar 

  26. H. Shi, Y. He, Y. Pan, D. Haihui, G. Zeng, L. Zhang and C. Zhang, J. Membr. Sci., 506, 60 (2016).

    CAS  Google Scholar 

  27. A. Hong, A. G. Fane and R. Burford, J. Membr. Sci., 222, 19 (2003).

    CAS  Google Scholar 

  28. T. Kawakatsu, R. M. Boom, H. Nabetani, Y. Kikuchi and M. Nakajima, AIChE J., 45, 967 (1999).

    CAS  Google Scholar 

  29. J. Kong and K. Li, Sep. Purif. Technol., 16, 83 (1999).

    CAS  Google Scholar 

  30. S. Wang, L. Chu and W. Chen, Chin. J. Chem. Eng., 14, 37 (2006).

    CAS  Google Scholar 

  31. X. Zhu, W. Tu, K. H. Wee and R. Bai, J. Membr. Sci., 466, 36 (2014).

    CAS  Google Scholar 

  32. Z. Wu, Z. Chang, K. Peng, Q. Wang and Z. Wang, Front. Env. Sci. Eng., 12, 1 (2018).

    Google Scholar 

  33. S. J. Gao, H. Qin, P. Liu and J. Jin, J. Mater. Chem. A, 3, 6649 (2015).

    CAS  Google Scholar 

  34. M. M. Pendergast and E. M. V. Hoek, Energy Environ. Sci., 4, 1946 (2011).

    CAS  Google Scholar 

  35. J. Sun, M. Iwasa, L. Gao and Q. Zhang, Carbon, 42, 895 (2004).

    CAS  Google Scholar 

  36. J. Gu, P. Xiao, J. Chen, J. Zhang, Y. Huang and T. Chen, ACS Appl. Mater. Interfaces, 6, 16204 (2014).

    CAS  PubMed  Google Scholar 

  37. M. Grujicic, B. Pandurangan, D. C. Angstadt, K. L. Koudela and B. A. Cheeseman, J. Mater. Sci., 42, 5347 (2007).

    CAS  Google Scholar 

  38. A. Kalra, S. Garde and G. Hummer, Proc. Natl. Acad. Sci. USA, 100, 10175 (2003).

    CAS  PubMed  Google Scholar 

  39. W. J. Ma, L. Song, R. Yang, T. H. Zhang, Y. C. Zhao, L. F. Sun, Y. Ren, D. F. Liu, L. F. Liu, J. Shen, Z. X. Zhang, Y. J. Xiang, W. Y. Zhou and S. S. Xie, Nano Lett., 7, 2307 (2007).

    CAS  PubMed  Google Scholar 

  40. I. E. Palamà, S. D’Amone, M. Biasiucci, G. Gigli and B. Cortese, J. Mater. Chem. A, 2, 17666 (2014).

    Google Scholar 

  41. X. Yue, T. Zhang, D. Yang, F. Qiu and Z. Li, Ind. Eng. Chem. Res., 57, 10439 (2018).

    CAS  Google Scholar 

  42. V. Vatanpour, S. S. Madaeni, R. Moradian, S. Zinadini and B. Astinchap, Sep. Purif. Technol., 90, 69 (2012).

    CAS  Google Scholar 

  43. S. M. Abdelbasir and A. E. Shalan, Korean J. Chem. Eng., 36, 1209 (2019).

    CAS  Google Scholar 

  44. Y. L. Thuyavan, N. Anantharaman, G. Arthanareeswaran, A. F. Ismail and R. V. Mangalaraja, Desalination, 365, 355 (2015).

    CAS  Google Scholar 

  45. A. Fujishima, X. Zhang and D. A. Tryk, Surf. Sci. Rep., 63, 515 (2008).

    CAS  Google Scholar 

  46. H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng and G. Q. Lu, Nature, 453, 638 (2008).

    CAS  PubMed  Google Scholar 

  47. S. J. Gao, Z. Shi, W. B. Zhang, F. Zhang and J. Jin, ACS Nano, 8, 6344 (2014).

    CAS  PubMed  Google Scholar 

  48. F. Shi, Y. Ma, J. Ma, P. Wang and W. Sun, J. Membr. Sci., 389, 522 (2012).

    CAS  Google Scholar 

  49. A. I. López-Lorente, B. M. Simonet and M. Valcárcel, Anal. Chem., 82, 5399 (2010).

    PubMed  Google Scholar 

  50. R. Moradian and B. Astinchap, Nano, 5, 139 (2010).

    CAS  Google Scholar 

  51. M. Adeli, A. Bahari and H. Hekmatara, Nano, 3, 37 (2008).

    CAS  Google Scholar 

  52. J. Zhou, X. Zhou, X. Sun, R. Li, M. Murphy, Z. Ding, X. Sun and T. K. Sham, Chem. Phys. Lett., 437, 229 (2007).

    CAS  Google Scholar 

  53. Y. Ying, J. C. Yu, J. G. Yu, Y. C. Kwok, Y. K. Che, J. C. Zhao, D. Lu, W. K. Ge and P. K. Wong, Appl. Catal. A-Gen., 289, 186 (2005).

    Google Scholar 

  54. X. Li, J. Niu, Z. Jin, H. Li and Z. Liu, J. Phys. Chem. B, 107, 2453 (2003).

    CAS  Google Scholar 

  55. R. N. Wenzel, Ind. Eng. Chem., 28, 988 (1936).

    CAS  Google Scholar 

  56. T. Yuan, J. Meng, T. Hao, Y. Zhang and M. Xu, J. Membr. Sci., 470, 112 (2014).

    CAS  Google Scholar 

  57. P. Gao, Z. Liu, D. D. Sun and W. J. Ng, J. Mater. Chem. A, 2, 14082 (2014).

    CAS  Google Scholar 

  58. X. Peng, J. Jin, N. Yoshimichi, O. Takahisa and I. Izumi, Nat. Nanotechnol., 4, 353 (2009).

    CAS  PubMed  Google Scholar 

  59. J. Zhou, Q. Chang, Y. Wang, J. Wang and G. Meng, Sep. Purif. Technol., 75, 243 (2010).

    CAS  Google Scholar 

  60. Y. Liu, Y. Su, J. Cao, J. Guan, R. Zhang, M. He, L. Fan, Q. Zhang and Z. Jiang, J. Membr. Sci., 542, 254 (2017).

    CAS  Google Scholar 

  61. R. Liu, A. K. Y. Raman, I. Shaik, C. Aichele and S.-J. Kim, J. Water Process Eng., 26, 124 (2018).

    Google Scholar 

  62. M. Tian, Y. Liao and R. Wang, J. Membr. Sci., 596, 1 (2020).

    Google Scholar 

  63. Y. Zhang, L. Shan, Z. Tu and Y. Zhang, Sep. Purif. Technol., 63, 207 (2008).

    CAS  Google Scholar 

  64. Y. Zhang, C. Ping, T. Du, L. Shan and Y. Wang, Sep. Purif. Technol., 70, 153 (2009)..

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant no. 21677087) and the National Science and Technology Major Project of China (grant no. 2016ZX05040-005). The author thanks Jake Carpenter from UCLA for linguistic assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Wu or Yujiang Li.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2020_585_MOESM1_ESM.pdf

Superwetting TiO2-decorated single-walled carbon nanotube composite membrane for highly efficient oil-in-water emulsion separation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhao, R., Wang, Q. et al. Superwetting TiO2-decorated single-walled carbon nanotube composite membrane for highly efficient oil-in-water emulsion separation. Korean J. Chem. Eng. 37, 2054–2063 (2020). https://doi.org/10.1007/s11814-020-0585-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0585-3

Keywords

Navigation