Skip to main content

Advertisement

Log in

Experimental study and artificial intelligence modeling of liquid-liquid mass transfer in multiple-ring microchannels

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This paper reports the results of using multiple-ring microchannels for enhancing liquid-liquid extraction performance. The effects of geometrical parameters including ring and distance characteristics on the extraction efficiency were studied. The mass transfer performance was analyzed using Water + Alizarin Red S+1-octanol system. By change in geometrical parameters, the extraction efficiency of multiple-ring microchannels improved up to 62.9% compared with that of the plain one. The performance ratio is defined based on two contrary effects of friction factor and extraction efficiency for evaluating the extraction performance. A performance ratio of 1.5 was achieved that confirmed the advantage of using this type of microfluidic extraction system. Artificial neural network and adaptive neuro-fuzzy inference system were utilized to evaluate the performance ratio of the multiple-ring microchannels. The mean relative error values of the testing data were 0.397% and 0.888% for the neural network and the neuro-fuzzy system, respectively. The estimation accuracy for both models is appropriate, but the precision of the neural network id higher than that of the neuro-fuzzy system. The genetic algorithm approach was employed to develop a new empirical correlation for predicting the performance ratio with a mean relative error of 1.558%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

cross-sectional area of the microchannel [m2]

A1 and A2 :

membership function

B1 and B2 :

membership function

b:

bias

C:

Alizarin Red S concentration [mg/L]

ci :

constant

D:

rings diameter [m]

d:

inner diameter of the microchannels [m]

E:

extraction efficiency

F:

transfer function

f:

friction factor

H:

distance between rings [m]

kLa:

volumetric mass transfer coefficient [1/s]

L:

total length of the microchannels [m]

m:

number of input variables

N:

number of rings

n:

number of experimental data points

AP:

pressure drop [mbar]

Q:

volumetric flow rate [m3/s]

r:

number of neurons

Re:

Reynolds number

ta :

average of the target data

ti :

target data

tm :

fluid residence time [s]

Um :

two-phase mixture superficial velocity [m/s]

V:

volume of the mixing channel [m3]

W:

weight

X:

network input

x:

volume fraction of phases

Y:

final output of the network

ρ :

density [kg/m3]

μ :

dynamic viscosity [Pa s]

η :

performance ratio criterion [-]

δ :

rings characteristic [-]

β :

distance characteristic [-]

A:

average

aq:

aqueous phase

Exp:

experimental results

in:

inlet

m:

two-phase mixture

org:

organic phase

out:

outlet

Pred:

predicted values

*:

equilibrium

References

  1. A. Afzal and K.-Y Kim, Chem. Eng. Sci., 116, 263 (2014).

    CAS  Google Scholar 

  2. Y.S. Huh, S.J. Jeon, E.Z. Lee, H.S. Park and W.H. Hong, Korean J. Chem. Eng., 28, 633 (2011).

    CAS  Google Scholar 

  3. M. Mohadesi, B. Aghel, M.H. Khademi and S. Sahraei, Korean J. Chem. Eng., 34, 1013 (2017).

    CAS  Google Scholar 

  4. M. Sato and M. Goto, Sep. Sci. Technol., 39, 3163 (2004).

    CAS  Google Scholar 

  5. Y. Yamasaki, M. Goto, A. Kariyasaki, S. Morooka, Y. Yamaguchi, M. Miyazaki and H. Maeda, Korean J. Chem. Eng., 26, 1759 (2010).

    Google Scholar 

  6. K. Singh, A. Renjith and K. Shenoy, Chem. Eng. Process., 98, 95 (2015).

    CAS  Google Scholar 

  7. A.J. Tusek, I. Anic, Z. Kurtanjek and B. Zelic, Korean J. Chem. Eng., 32, 1037 (2015).

    CAS  Google Scholar 

  8. J. Tang, X. Zhang, W. Cai and F. Wang, Exp. Therm. Fluid Sci., 49, 185 (2013).

    CAS  Google Scholar 

  9. F.H. Kakavandi, M. Rahimi, O. Jafari and N. Azimi, Chem. Eng. Process., 107, 58 (2016).

    Google Scholar 

  10. L. Zhang, F. Xie, S. Li, S. Yin, J. Peng and S. Ju, Green. Process. Synth., 4, 3 (2015).

    CAS  Google Scholar 

  11. A. Kaewchada, S. Tubslingkra and A. Jaree, Chem. Eng. Res. Des., 117, 784 (2017).

    CAS  Google Scholar 

  12. D. Das, S. Duraiswamy, Z. Yi, V. Chan and C. Yang, Sep. Sci. Technol., 50, 1023 (2015).

    CAS  Google Scholar 

  13. S. Hossain, M. Ansari and K.-Y Kim, Chem. Eng. J., 150, 492 (2009).

    CAS  Google Scholar 

  14. I. Shah, S.W. Kim, K. Kim, Y.H. Doh and K.H. Choi, Chem. Eng. J., 358, 691 (2019).

    CAS  Google Scholar 

  15. A.A. Babaei, A. Khataee, E. Ahmadpour, M. Sheydaei, B. Kakavandi and Z. Alaee, Korean J. Chem. Eng., 33, 1352 (2016).

    CAS  Google Scholar 

  16. M. Molashahi and H. Hashemipour, Korean J. Chem. Eng., 29, 601 (2012).

    CAS  Google Scholar 

  17. M.S.V. Krishna, K.M.S. Begum and N. Anantharaman, Powder Technol., 307, 37 (2017).

    CAS  Google Scholar 

  18. A. Lashkaripour, M. Goharimanesh, A.A. Mehrizi and D. Densmore, Microelectron. J., 78, 73 (2018).

    Google Scholar 

  19. F.H. Kakavandi, M. Rahimi, M. Baniamer and H.R. Mahdavi, Chem. Pap., 71, 2521 (2017).

    Google Scholar 

  20. Y. Zhao, G. Chen and Q. Yuan, AIChE J., 53, 3042 (2007).

    CAS  Google Scholar 

  21. D. Tsaoulidis, V. Dore, P. Angeli, N.V. Plechkova and K.R. Seddon, Chem. Eng. J., 227, 151 (2013).

    CAS  Google Scholar 

  22. M. Rahimi, S.R. Shabanian and A.A. Alsairafi, Chem. Eng. Process., 48, 762 (2009).

    CAS  Google Scholar 

  23. S.R. Moosavi, D.A. Wood, M.A. Ahmadi and A. Choubineh, Nat. Resour. Res., 28, 1619 (2019).

    CAS  Google Scholar 

  24. M.A. Ahmadi, M. Ebadi and A. Yazdanpanah, J. Pet. Sci. Eng., 123, 7 (2014).

    CAS  Google Scholar 

  25. M.A. Ahmadi, M. Masumi, R. Kharrat and A.H. Mohammadi, Chem. Eng. Technol., 37, 409 (2014).

    CAS  Google Scholar 

  26. M.A. Ahmadi, Math. Probl. Eng., 2015, 1 (2015).

    Google Scholar 

  27. M.A. Ahmadi and S.R. Shadizadeh, Fuel, 102, 716 (2012).

    CAS  Google Scholar 

  28. M.A. Ahmadi, Fluid Phase Equilib., 314, 46 (2012).

    CAS  Google Scholar 

  29. M.A. Ahmadi, J. Pet. Explor. Prod. Technol., 1, 99 (2011).

    CAS  Google Scholar 

  30. M.A. Ahmadi and A. Ahmadi, Int. J. Low Carbon Technol., 11, 325 (2016).

    CAS  Google Scholar 

  31. M.-A. Ahmadi, M.R. Ahmadi, S.M. Hosseini and M. Ebadi, J. Pet. Sci. Eng., 123, 183 (2014).

    CAS  Google Scholar 

  32. M.-A. Ahmadi, A. Bahadori and S.R. Shadizadeh, Fuel, 139, 154 (2015).

    CAS  Google Scholar 

  33. M.A. Ahmadi, M. Ebadi, P.S. Marghmaleki and M.M. Fouladi, Fuel, 124, 241 (2014).

    CAS  Google Scholar 

  34. M.A. Ahmadi and M. Ebadi, Fuel, 117, 1074 (2014).

    CAS  Google Scholar 

  35. C.C. Yuen, S.K. Gupta and A.K. Ray, J. Membr. Sci., 176, 177 (2000).

    CAS  Google Scholar 

  36. Y. He, J. Pei, C. Srinivasakannan, S. Li, J. Peng, S. Guo, L. Zhang and S. Yin, Hydrometallurgy, 179, 175 (2018).

    CAS  Google Scholar 

  37. S. Acharya and S. Mishra, Sep. Sci. Technol., 52, 1660 (2017).

    CAS  Google Scholar 

  38. E.A. Dil, M. Ghaedi and A. Asfaram, Ultrason. Sonochem., 34, 27 (2017).

    Google Scholar 

  39. A.H. Mehrkesh, S. Hajimirzaee, M.S. Hatamipour and T. Tavakoli, Chem. Eng. Technol., 34, 459 (2011).

    CAS  Google Scholar 

  40. S. Ghoreishi, A. Hedayati and S. Mousavi, J. Supercrit. Fluids, 112, 57 (2016).

    CAS  Google Scholar 

  41. A. Hedayati and S. Ghoreishi, Chem. Prod. Process. Model., 11, 217 (2016).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Rahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, F., Rahimi, M. Experimental study and artificial intelligence modeling of liquid-liquid mass transfer in multiple-ring microchannels. Korean J. Chem. Eng. 37, 411–422 (2020). https://doi.org/10.1007/s11814-019-0453-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0453-1

Keywords

Navigation