Skip to main content
Log in

The effects of radiation on heat and mass transfer of magnetohydrodynamic Marangoni flow in the boundary layer over a disk

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study investigated the problem of radiation effects on the flow heat and mass transfer of magnetohydrodynamic steady laminar Marangoni convection in the boundary layer over a disk in the presence of a linear heat source and first-order chemical reactions. The governing partial differential equations of the disk model were established and transformed to a series of ordinary differential equations via suitable self-similar transformations, which were solved numerically by the shooting technique coupled with Runge-Kutta scheme and Newton’s method. The Marangoni number related to temperature and concentration was derived, the effects of the magnetic Hartmann number, Marangoni number, radiation number, heat source number and chemical reaction number related to velocity, temperature, and concentration profiles were analyzed. The results demonstrate that the Hartmann number and Marangoni number have significant impacts on the heat and mass transfer of the Marangoni boundary layer flow. The temperature tends to increase with heat generation and decrease with heat absorption, and it exhibits a delay phenomenon for significant heat generation cases. Negative/positive chemical reactions tended to increase/decrease the concentration, similar to the effect of heat generation/absorption on the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Arafune and A. Hirata, J. Cryst. Growth, 197, 811 (1999).

    Article  CAS  Google Scholar 

  2. A. M. Cazabat, F. Heslot, S. M. Troian and P. Carles, Nature, 346, 824 (1990).

    Article  CAS  Google Scholar 

  3. J. Straub, Exp. Therm. Fluid Sci., 9(3), 253 (1994).

    Article  CAS  Google Scholar 

  4. D. M. Christopher and B. X. Wang, Int. J. Heat Mass Trans., 44, 799 (2001).

    Article  CAS  Google Scholar 

  5. D. M. Christopher and B. X. Wang, Int. J. Therm. Sci., 40, 564 (2001).

    Article  CAS  Google Scholar 

  6. I. E. Parra, J. M. Perales and J. Meseguer, Adv. Space Res., 29(4), 625 (2002).

    Article  CAS  Google Scholar 

  7. Y. P. Lei, H. Murakawa, Y. W. Shi and X. Y. Li, Comput. Mater. Sci., 21, 276 (2001).

    Article  CAS  Google Scholar 

  8. L. X. Yang, X. F. Peng and B. X. Wang, Int. J. Heat Mass Trans., 44, 4465 (2001).

    Article  CAS  Google Scholar 

  9. P. J. Modenesi, E. R. Apolinário and I. M. Pereira, J. Mater. Process. Technol., 99, 260 (2000).

    Article  Google Scholar 

  10. I. S. Kim and A. Basu, J. Mater. Process. Technol., 77, 17 (1998).

    Article  Google Scholar 

  11. J. R. A. Pearson, J. Fluid Mech, 4(5), 489 (1958).

    Article  Google Scholar 

  12. L. E. Scriven and C. V. Strenling, Nature, 187, 186 (1960).

    Article  Google Scholar 

  13. L. G. Napolitano, Marangoni boundary layers. In: Proceedings of the 3rd European Symposium on Material Science in Space, Grenoble, ESA SP-142, JUNE 1979.

  14. I. Pop, A. Postelnicu and T. Grosan, Meccanica, 36, 555 (2001).

    Article  Google Scholar 

  15. A. J. Chamkha, I. Pop and H. S. Takhar, Meccanica, 41, 219 (2006).

    Article  Google Scholar 

  16. M. Saleem, M. A. Hossain, S. Mahmud and I. Pop, Int. J. Heat Mass Trans., 54, 4473 (2011).

    Article  Google Scholar 

  17. N. M. Arifin, R. Nazar and I. Pop, Meccanica, 46, 833 (2011).

    Article  Google Scholar 

  18. N. A. Mat, N. M. Arifin, R. Nazar, F. Ismail and I. Pop, Meccanica, 48, 83 (2013).

    Article  Google Scholar 

  19. M. A. Sheremet and I. Pop, J. Therm. Anal. Calorim., 135(1), 357 (2019).

    Article  CAS  Google Scholar 

  20. A. A. Mudhaf and A. J. Chamkha, Heat Mass Transfer, 42, 112 (2005).

    Article  Google Scholar 

  21. E. Magyari and A. J. Chamkha, Heat Mass Transfer, 43, 965 (2007).

    Article  Google Scholar 

  22. E. Magyari and A. J. Chamkha, Int. J. Therm. Sci., 47, 848 (2008).

    Article  CAS  Google Scholar 

  23. Y. Zhang and L. C. Zheng, Chem. Eng. Sci., 69, 449 (2012).

    Article  CAS  Google Scholar 

  24. Y. Zhang and L. C. Zheng, Chinese J. Chem. Eng., 22(4), 365 (2014).

    Article  Google Scholar 

  25. Y. H. Lin, L. C. Zheng and X. X. Zhang, J. Heat Transfer, 135, 051702 (2013).

    Article  Google Scholar 

  26. Y. H. Lin, L. C. Zheng and X. X. Zhang, Int. J. Heat Mass Trans., 77, 708 (2014).

    Article  CAS  Google Scholar 

  27. Y. H. Lin, B. T. Li, L. C. Zheng and G. Chen, Powder Technol., 301, 379 (2016).

    Article  CAS  Google Scholar 

  28. C. R. Jiao, L. C. Zheng, Y. H. Lin, L. X. Ma and G. Chen, Int. J. Heat Mass Trans., 92, 700 (2016).

    Article  Google Scholar 

  29. L. C. Zheng, C. R. Jiao, Y. H. Lin and L. X. Ma, Heat Transfer Eng., 38(6), 641 (2017).

    Article  CAS  Google Scholar 

  30. M. Sheikholeslami and D. D. Ganji, Indian J. Phys., 91(12), 1581 (2017).

    Article  CAS  Google Scholar 

  31. M. Sheikholeslami and D. D. Ganji, Int. J. Hydrog. Energy, 42, 2748 (2017).

    Article  CAS  Google Scholar 

  32. M. Sheikholeslami and A. J. Chamkha, J. Mol. Liq., 225, 750 (2017).

    Article  CAS  Google Scholar 

  33. E. H. Aly and A. Ebaid, J. Mol. Liq., 215, 625 (2016).

    Article  CAS  Google Scholar 

  34. T. Hayat, M. I. Khan, M. Farooq, A. Alsaedi and T. Yasmeen, Int. J. Heat Mass Trans., 106, 810 (2017).

    Article  CAS  Google Scholar 

  35. J. H. Zhao, L. C. Zheng, X. H. Chen, X. X. Zhang and F. W. Liu, Appl. Math. Model., 44, 497 (2017).

    Article  Google Scholar 

  36. Y. H. Lin and L. C. Zheng, AIP Advances, 5, 107225 (2015).

    Article  Google Scholar 

  37. B. Mahanthesh, B. J. Gireesha, B. C. Prasannakumara and N. S. Shashikumar, Nucl. Eng. Technol., 49, 1660 (2017).

    Article  CAS  Google Scholar 

  38. B. Mahanthesh, B. J. Gireesha, B. C. Prasannakumara and P. B. Sampathkumar, Results Phys., 7, 2990 (2017).

    Article  Google Scholar 

  39. B. Mahanthesh, B. J. Gireesha, N. S. Shashikumar, T. Hayat and A. Alsaedi, Results Phys., 9, 78 (2018).

    Article  Google Scholar 

  40. B. Mahanthesh and B. J. Gireesha, Results Phys., 8, 869 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

Yanhai Lin was supported by the National Natural Science Foundations of China (Nos. 11702101 and 11626106), the Fundamental Research Funds for the Central Universities and the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (No. ZQN-PY502), the Natural Science Foundation of Fujian Province (No. 2019J05093) and Quanzhou High-Level Talents Support Plan. Meng Yang was supported by the Subsidized Project for Postgraduates’ Innovative Fund in Scientific Research of Huaqiao University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhai Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Yang, M. The effects of radiation on heat and mass transfer of magnetohydrodynamic Marangoni flow in the boundary layer over a disk. Korean J. Chem. Eng. 37, 37–45 (2020). https://doi.org/10.1007/s11814-019-0416-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0416-6

Keywords

Navigation