Skip to main content

Advertisement

Log in

Molecular investigation of amine performance in the carbon capture process: Least squares support vector machine approach

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The growing threat of global warming has raised more attention towards carbon capture. Current amine plants used for carbon removal suffer from great costs inflicted by high energy demand of the solvent regeneration step. Recently, looking for amines with proper performance in reduced temperatures has been the subject of many researches. Clearly, conducting these researches without any criterion and based only on trial and error wastes large amounts of money and time; thus, it is highly needed that the effect of different amine structural parameters be studied on the amine’s cyclic capacity. Quantitative structure property relationship (QSPR) provides an effective method for predicting amines capacity for CO2 absorption. In this work, density functional theory (DFT) was employed for optimization of the molecular geometries, and linear and nonlinear models based on parameters related to the molecular structure are presented. The value of the square of the correlation coefficient (R2) for the MLR and SVM models are 0.894 and 0.973, respectively. Developed models can be used as a criterion for amine selection. Reliability and high predictability of the models are confirmed based on statistical tests. Moreover, mechanistic interpretation of models for better understanding of the reaction mechanism of carbon capture was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weekly average atmospheric CO2 by the Mauna Loa Observatory. Available: http://www.esrl.noaa.gov/gmd/ccgg/trends/weeklyhtml.

  2. M. Van der Hoeven, CO2 emissions from fuel combustion-highlights, IEA Statistics (2014).

  3. G. Puxty, R. Rowland, A. Allport, Q. Yang, M. Bown, R. Burns, M. Maeder and M. Attalla, Environ. Sci. Technol., 43, 6427 (2009).

    Article  CAS  Google Scholar 

  4. Z. Wang, M. Fang, Y. Pan, S. Yan and Z. Luo, Chem. Eng. Sci., 93, 238 (2013).

    Article  CAS  Google Scholar 

  5. F. Karadas, M. Atilhan and S. Aparicio, Energy Fuels, 24, 5817 (2010).

    Article  CAS  Google Scholar 

  6. K. Jiang, K. Li, H. Yu and P. H. M. Feron, Chem. Eng. J., 347, 334 (2018).

    Article  CAS  Google Scholar 

  7. S. Y Oh, S. Yun and J. K. Kim, Appl. Energy, 216, 311 (2018).

    Article  Google Scholar 

  8. B. Zhao, F. Liu, Z. Cui, C. Liu, H. Yue, S. Tang, Y Liu, H. Lu and B. Liang, Appl. Energy, 185, 362 (2017).

    Article  CAS  Google Scholar 

  9. A. Cousins, L.T. Wardhaugh and P. H.M. Feron, Int. J. Greenhouse Gas Control, 5, 605 (2011).

    Article  CAS  Google Scholar 

  10. A. García-Abuín, D. Gómez-Díaz and J. M. Navaza, Fuel, 135, 191 (2014).

    Article  Google Scholar 

  11. G. Puxty, W Conway, Q. Yang, R. Bennett, D. Fernandes, P. Pearson, D. Maher and P. Feron, Int. J. Greenhouse Gas Control, 83, 11 (2019).

    Article  CAS  Google Scholar 

  12. S. Murai, M. Daigo, Y. Kato, Y. Maesawa, T. Muramatsu and S. Saito, Energy Procedia, 63, 1933 (2014).

    Article  CAS  Google Scholar 

  13. J. Zhang, R. Misch, Y. Tan and D. W. Agar, Chem. Eng. Technol., 34, 1481 (2011).

    Article  CAS  Google Scholar 

  14. Z. Zhang, Y. Li, W Zhang, J. Wang, M. R. Soltanian and A. G. Olabi, Renew. Sust. Energy Rev, 98, 179 (2018).

    Article  CAS  Google Scholar 

  15. A. K. Chakraborty, G. Astarita and K. B. Bischoff, Chem. Eng. Sci., 41, 997 (1986).

    Article  CAS  Google Scholar 

  16. G. Sartori and D. W. Savage, Ind. Eng. Chem. Fundam., 22, 239 (1983).

    Article  CAS  Google Scholar 

  17. P. Singh, J. P. Niederer and G. F. Versteeg, Int. J. Greenhouse Gas Control, 1, 5 (2007).

    Article  CAS  Google Scholar 

  18. P. Singh and G. F. Versteeg, Process Saf. Environ. Prot., 86, 347 (2008).

    Article  CAS  Google Scholar 

  19. D. Ghaslani, Z. E. Gorji, A. E Gorji and S. Riahi, Chem. Eng. Res. Des., 120, 15 (2017).

    Article  CAS  Google Scholar 

  20. A. E. Gorji, Z. E. Gorji and S. Riahi, Korean J. Chem. Eng., 34, 1405 (2017).

    Article  CAS  Google Scholar 

  21. W M. Berhanu, G. G. Pillai, A. A. Oliferenko and A. R. Katritzky, ChemPlusChem, 77, 507 (2012).

    Article  CAS  Google Scholar 

  22. M. Momeni and S. Riahi, J. Nat. Gas Sci. Eng., 21, 442 (2014).

    Article  CAS  Google Scholar 

  23. M. Momeni and S. Riahi, Int. J. Greenhouse Gas Control, 42, 157 (2015).

    Article  CAS  Google Scholar 

  24. B. Rezaei and S. Riahi, J. Nat. Gas Sci. Eng., 33, 388 (2016).

    Article  CAS  Google Scholar 

  25. J. A. K Suykens, Least squares support vector machines, World Scientific (2002).

  26. I. Mehraein and S. Riahi, J. Mol. Liq., 225, 521 (2017).

    Article  CAS  Google Scholar 

  27. C. J. Cramer and F.M. Bickelhaupt, Angew. Chem. Int. Ed., 42, 381 (2003).

    Google Scholar 

  28. M. J. Frisch, A. B. Nielsen and A. Frisch, Gaussian 98: Gaussian Incorporated (1998).

  29. R. Todeschini, V. Consonni, A. Mauri and M. Pavan, DRAGON version 6, Talete srl, Milan, Italy (2011).

  30. R. M. Gray, Entropy and information theory, Springer Science & Business Media (2011).

  31. J. G. Topliss and R. J. Costello, J. Med. Chem., 15, 1066 (1972).

    Article  CAS  Google Scholar 

  32. J. G. Topliss and R. P. Edwards, J. Med. Chem., 22, 1238 (1979).

    Article  CAS  Google Scholar 

  33. M. Barysz, G. Jashari, R. S. Lall, V. K. Srivastava and N. Trinajstic, Stud. Phys. Theor. Chem, 28, 222 (1983).

    CAS  Google Scholar 

  34. A. T. Balaban, D. Ciubotariu and M. Medeleanu, J. Chem. Inf. Comput. Sci., 31, 517 (1991).

    Article  CAS  Google Scholar 

  35. R. Todeschini and V. Consonni, Molecular Descriptors for Chemo-informatics, John Wiley & Sons, 41 (2009).

  36. A. K. Ghose and G. M. Crippen, J. Comput. Chem., 7, 565 (1986).

    Article  CAS  Google Scholar 

  37. A. Golbraikh and A. Tropsha, Mol. Diver., 5, 231 (2000).

    Article  CAS  Google Scholar 

  38. A. Tropsha, P. Gramatica and V. Gombar, QSAR Comb. Sci., 22, 69 (2003).

    Article  CAS  Google Scholar 

  39. J. Jaworska, N. Nikolova-Jeliazkova and T. Aldenberg, ATLA-NOT-TINGHAM, 33, 445 (2005).

    CAS  Google Scholar 

  40. S. Gangarapu, A. T. Marcelis and H. Zuilhof, ChemPhysChem, 14, 3936 (2013).

    Article  CAS  Google Scholar 

  41. E. F. Da Silva and H. F. Svendsen, Int. J. Greenhouse Gas Control, 1, 151 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siavash Riahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, B., Riahi, S. & Gorji, A.E. Molecular investigation of amine performance in the carbon capture process: Least squares support vector machine approach. Korean J. Chem. Eng. 37, 72–79 (2020). https://doi.org/10.1007/s11814-019-0408-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0408-6

Keywords

Navigation