Skip to main content

Advertisement

Log in

Low temperature adsorption of nitric oxide on cerium impregnated biomass-derived biochar

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study investigates the catalytic oxidation of NO to NO2 over biomass-derived biochar at ambient temperature. Rubber seed shell (RSS) was used as lignocellulosic waste to develop biochar for NO capture. The NO adsorption capacity of pristine biochar was low, about 17.61 mg/g at 30 oC. To enhance the NO uptake capacity of biochar, cerium (Ce) was introduced into the biochar surface through simple impregnation method. Upon this, the NO adsorption capacity of 3 wt% Ce-loaded biochar profoundly increased to 75.59 mg/g at the same adsorption condition. This was confidently due to the excellent oxygen storage capacity of ceria which could react with free active sites on the biochar surface to form oxidized cites C(O). Characterization results indicated that the adsorbed species was in the form of -O-N=O, suggesting that the adsorption of NO was followed by reaction with surface oxidized sites to form NO2. Studying the kinetics of the NO adsorption using pseudo-second order, Avrami and Elovich models showed that chemisorption was the chief mechanism that governed the adsorption process and the activation energy for NO adsorption was estimated to be around −45 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. T. Izquierdo and B. Rubio, Environ. Sci. Technol., 32, 4017 (1998).

    Article  CAS  Google Scholar 

  2. X. Tang, F. Gao, Y. Xiang, H. Yi and S. Zhao, Catal. Commun., 64, 12 (2015).

    Article  CAS  Google Scholar 

  3. X. Zhang and R. Lin, Energy Procedia, 158, 4805 (2019).

    Article  CAS  Google Scholar 

  4. F. Gao, C. Chu, W. Zhu, X. Tang, H. Yi and R. Zhang, Appl. Surf. Sci., 479, 548 (2019).

    Article  CAS  Google Scholar 

  5. Y. Guo, Y. Li, T. Zhu and M. Ye, Fuel, 143, 536 (2015).

    Article  CAS  Google Scholar 

  6. J. Chen, F. Cao, S. Chen, M. Ni, X. Gao and K. Cen, Appl. Surf. Sci., 317, 26 (2014).

    Article  CAS  Google Scholar 

  7. A. Rubel, M. Stewart and J. Stencel, J. Mater. Res., 10, 562 (1995).

    Article  CAS  Google Scholar 

  8. X. Wang, X. Xu, S. Liu, Y. Zhang, C. Zhao and F. Yang, J. Hazard. Mater., 312, 175 (2016).

    Article  CAS  Google Scholar 

  9. A. M. Rubel and J. M. Stencel, Energy Fuels, 10, 704 (1996).

    Article  CAS  Google Scholar 

  10. H. Chen, Y. Wang and Y.-K. Lyu, Mol. Catal., 454, 21 (2018).

    Article  CAS  Google Scholar 

  11. S. Adapa, V. Gaur and N. Verma, Chem. Eng. J., 116, 25 (2006).

    Article  CAS  Google Scholar 

  12. B. C. Enger, X. Auvray, R. Lodeng, M. Menon, D. Waller and M. Ronning, Appl. Catal., A, 564, 142 (2018).

    Article  Google Scholar 

  13. F. Cao, J. Chen, M. Ni, H. Song, G. Xiao, W. Wu, X. Gao and K. Cen, Appl. Surf. Sci., 4, 16281 (2014).

    CAS  Google Scholar 

  14. D. Stoyanova, P. Georgieva, I. Avramova, K. Aleksieva, D. Marinova and D. Mehandjiev, J. Rare Earths, 37, 151 (2019).

    Article  CAS  Google Scholar 

  15. M. Y. Mihaylov, E. Z. Ivanova, H. A. Aleksandrov, P. S. Petkov, G. N. Vayssilov and K. I. Hadjiivanov, Mol. Catal., 451, 114 (2018).

    Article  CAS  Google Scholar 

  16. C. Fang, D. Zhang, L. Shi, R. Gao, H. Li, L. Ye and J. Zhang, Catal. Sci. Technol., 3, 803 (2013).

    Article  CAS  Google Scholar 

  17. A. S. Al-Rahbi and P. T. Williams, Waste Manag., 49, 188 (2016).

    Article  CAS  Google Scholar 

  18. F.-T. You, G.-W. Yu, Y. Wang, Z.-J. Xing, X.-J. Liu and J. Li, Appl. Surf. Sci., 413, 387 (2017).

    Article  CAS  Google Scholar 

  19. F.-T. You, G.-W. Yu, Z.-J. Xing, J. Li, S.-Y. Xie, C.-X. Li, G. Wang, H.-Y. Ren and Y. Wang, Appl. Surf. Sci., 471, 633 (2019).

    Article  CAS  Google Scholar 

  20. Y.-W. Lee, D.-K. Choi and J.-W. Park, Carbon, 40, 1409 (2002).

    Article  CAS  Google Scholar 

  21. X. Li, Z. Dong, J. Dou, J. Yu and A. Tahmasebi, Fuel Process. Technol., 148, 91 (2016).

    Article  CAS  Google Scholar 

  22. S. Sumathi, S. Bhatia, K. Lee and A. Mohamed, Chem. Eng. J., 162, 51 (2010).

    Article  CAS  Google Scholar 

  23. W. Wang, R. Guo, W. Pan and G. Hu, J. Rare Earths, 36, 588 (2018).

    Article  CAS  Google Scholar 

  24. W. Wang, W. Li, R. Guo, Q. Chen, Q. Wang, W. Pan and G. Hu, J. Rare Earths, 34, 876 (2016).

    Article  CAS  Google Scholar 

  25. X. Yu, X. Wu, Z. Chen, Z. Huang and G. Jing, Mol. Catal., 476, 110512 (2019).

    Article  CAS  Google Scholar 

  26. S. N. Kudahi, A. R. Noorpoor and N. M. Mahmoodi, J. CO 2Util., 21, 17 (2017).

    Article  CAS  Google Scholar 

  27. P. Lahijani, M. Mohammadi and A. R. Mohamed, J. CO 2Util., 26, 281 (2018).

    Article  CAS  Google Scholar 

  28. R.-S. Juang and M.-L. Chen, Ind. Eng. Chem. Res., 36, 813 (1997).

    Article  CAS  Google Scholar 

  29. F.-C. Wu, R.-L. Tseng and R.-S. Juang, Chem. Eng. J., 150, 366 (2009).

    Article  CAS  Google Scholar 

  30. L. Largitte and R. Pasquier, Chem. Eng. Res., 109, 495 (2016).

    Article  CAS  Google Scholar 

  31. E. Andreoli, L. Cullum and A. Barron, Ind. Eng. Chem. Res., 54, 878 (2015).

    Article  CAS  Google Scholar 

  32. H. Teng and E. M. Suuberg, J. Phy. Chem., 97, 478 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the Long-Term Research Grant Scheme 203/PJKIMIA/6720009 from Ministry of Education, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Rahman Mohamed.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anthonysamy, S.I., Lahijani, P., Mohammadi, M. et al. Low temperature adsorption of nitric oxide on cerium impregnated biomass-derived biochar. Korean J. Chem. Eng. 37, 130–140 (2020). https://doi.org/10.1007/s11814-019-0405-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0405-9

Keywords

Navigation