Skip to main content
Log in

Size control of azilsartan by drowning-out crystallization with phase transformation

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

To complement the insufficient bioavailability of azilsartan, particle size reduction of azilsartan by drowning-out was attempted. By injecting an azilsartan/ethanol solution into the antisolvent of water, two phases of azilsartan, amorphous and crystalline type A, were found along with phase transformation. The crystal size was strongly affected by the operating parameters such as the volume ratio of antisolvent/azilsartan solution, crystallization temperature, and additives. The crystal size decreased upon increasing the antisolvent/azilsartan solution volume ratio and lowering the temperature. Furthermore, addition of carboxylic acids to the antisolvent of water produced nano-meter sized crystals. In particular, 200 nm particles were obtained with acetic acid. An enhancement in the dissolution rate was found for size-reduced azilsartan crystals, especially when the crystals’ sizes were in the nanometer range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

collision factor [m−3 s−1]

ao :

mean effective diameter [m]

C:

concentration of azilsartan in ethanol [mmol L−1]

C*:

saturation concentration of azilsartan in the ethanol/water mixture [mmol L−1]

J:

heterogeneous nucleation rate [m−3 s−1]

k:

heterogeneous nucleation rate [J K−1]

N0 :

number of solute molecules per unit volume [m−3]

R:

gas constant [Jmol−1 K−1]

S:

solubility of azilsartan [-]

T:

temperature [K]

T hm :

harmonic mean of the experimental temperature [K]

tind :

induction time [s]

ttrs :

total phase transformation time [s]

V:

frequency of molecular transport at the nucleus-liquid interface [s−1]

X:

solubility of azilsartan [mol L−1]

x:

azilsartan saturation concentration of ethanol/water mixture [gL−1]

ΔG:

thermodynamic driving force for phase transformation [k] mol−1]

ΔGcrit :

critical free energy for nucleation [J]

ΔsolnH0 :

standard molar enthalpy of solution [kJ mol−1]

ΔsolnGo :

standard molar free energy of solution [kJ mol−1]

ΔsolnSo :

standard molar entropic change of solution [J mol−1 K−1]

η:

heterogeneous nucleation rate [kg m−1 s−1]

φ:

heterogeneous nucleation factor [-]

References

  1. T. W. Kurtz and T. Kajiya, Vasc. Health Risk Manage, 8, 133 (2012).

    Article  Google Scholar 

  2. N. Blagden, M. de Matas, P. T. Gavan and P. York, Adv. Drug Deliv. Rev., 59(7), 617 (2007).

    Article  CAS  Google Scholar 

  3. A. A. Noyes and W. R. Whitney, J. Am. Chem. Soc., 19(12), 930 (1897).

    Article  Google Scholar 

  4. T. Lu, Y. Sun, D. Ding, Q. Zhang, R. Fan, Z. He and J. Wang, AAPS J., 18(2), 473 (2017).

    CAS  Google Scholar 

  5. A.P. Tinke, K. Vanhoutte, R. De Maesschalck, S. Verheyen and H. De Winter, J. Pharm. Biomed. Anal., 39(5), 900 (2005).

    Article  CAS  Google Scholar 

  6. S. Verma, R. Gokhale and D. J. Burgess, Int. J. Pharm., 380(1–2), 216 (2009).

    Article  CAS  Google Scholar 

  7. N. Rasenack and B. W. Müller, Pharm. Dev. Technol., 9(1), 1 (2004).

    Article  CAS  Google Scholar 

  8. C. Sharma, M. A. Desai and S. R. Patel, Cryst. Res. Technol., 53(3), 1800001 (2018).

    Article  Google Scholar 

  9. S. Jain, V. A. Reddy, S. Arora and K. Patel, Drug Deliv. Transl. Res., 6(5), 498 (2016).

    Article  CAS  Google Scholar 

  10. Q. Ma, H. Sun, E. Che, X. Zheng, T. Jiang, C. Sun and S. Wang, Int. J. Pharm., 441(1–2), 75 (2013).

    Article  CAS  Google Scholar 

  11. Z. Zhang, Y. Le, J. Wang, H. Zhao and J. Chen, Particuology, 10(4), 462 (2012).

    Article  CAS  Google Scholar 

  12. B. C. Hancock and G. Zografi, Pharm. Res., 11, 471 (1994).

    Article  CAS  Google Scholar 

  13. H. K. Chan and N. Y. Chew, Adv. Drug Deliv. Rev., 55, 793 (2003).

    Article  CAS  Google Scholar 

  14. W.-S. Kim and K.-K. Koo, Cryst. Growth Des., 19, 1797 (2019).

    Article  CAS  Google Scholar 

  15. A. V. R. Reddy, S. Garaga, C. Takshinamoorthy, G. Gupta and A. Naidu, Indo Am. J. Pharm. Res., 5(6), 2208 (2015).

    CAS  Google Scholar 

  16. E. Tomlinson, Int. J. Pharm., 13, 115 (1983).

    Article  CAS  Google Scholar 

  17. E. Tomlinson and S. S. Davis, J. Colloid Interface Sci., 76, 563 (1980).

    Article  CAS  Google Scholar 

  18. R. R. Krug, W. G. Hunter and R. A. Grieger, J. Phys. Chem., 80, 2341 (1976).

    Article  CAS  Google Scholar 

  19. P. Bustamante, S. Romero, A. Peña, B. Escalera and A. Reillo, J. Pharm. Sci., 87, 1590 (1998).

    Article  CAS  Google Scholar 

  20. A. C. Rouw and G. Somsen, J. S olution C hem., 10, 533 (1981).

    CAS  Google Scholar 

  21. W. J. M. Heuvelsland, C. de Visser and G. Somsen, J. Phys. Chem., 82, 29 (1978).

    Article  CAS  Google Scholar 

  22. F. Martíneza, M. Á. Peña and P. Bustamante, Fluid Phase Equilib., 308, 98 (2011).

    Article  Google Scholar 

  23. H. H. Tung, E. L. Paul, M. Midler and J. A. McCauley, Crystallization of organic compounds: an industrial perspective, Wiley, NewYork (2009).

    Book  Google Scholar 

  24. L. Lindfors, P. Skantze, U. Skantze, M. Rasmusson, A. Zackrisson and U. Olsson, Langmuir, 22(3), 906 (2006).

    Article  CAS  Google Scholar 

  25. D. Erdemir, A. Y. Lee and A. S. Myerson, Acc. Chem. R es., 42(5), 621 (2009).

    Article  CAS  Google Scholar 

  26. A. Maher, D. M. Croker, Å. C. Rasmuson and B. K. Hodnett, Cryst. Growth Des., 12(12), 6151 (2012).

    Article  CAS  Google Scholar 

  27. J. W. Kim, J. K. Kim, H. S. Kim and K. K. Koo, Cryst. Growth Des., 9(6), 2700 (2009).

    Article  CAS  Google Scholar 

  28. M. Kakran, N. G. Sahoo, I. L. Tan and L. Li, J. Nanoparticle Res., 14(3), 757 (2012).

    Article  Google Scholar 

  29. W. Du, Q. Yin, H. Hao, Y. Bao, X. Zhang, J. Huang, X. Li, G. Xie and J. Gong, Ind. Eng. Chem. Res., 53(14), 5652 (2014).

    Article  CAS  Google Scholar 

  30. C. H. Gu and V. Young, J. Pharm. Sci., 90(11), 1878 (2001).

    Article  CAS  Google Scholar 

  31. N. Rodríguez-hornedo and D. Murphy, J. Pharm. Sci., 88(7), 651 (1999).

    Article  Google Scholar 

  32. X. R. Zhang and L. Zhang, J. Mol. Struct., 1137, 320 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Kolon Life Science, Inc. (Seoul, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kee-Kahb Koo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, CI., Kim, WS. & Koo, KK. Size control of azilsartan by drowning-out crystallization with phase transformation. Korean J. Chem. Eng. 37, 716–723 (2020). https://doi.org/10.1007/s11814-019-0352-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0352-5

Keywords

Navigation