Skip to main content

Advertisement

Log in

Effect of filler size on thermal properties of paraffin/silver nanoparticle composites

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The effects of different filler sizes on the thermal properties were investigated in a thermal conductive composite (TCC) phase-change material (PCM) with three sizes (9, 65, and 300 nm) of silver nanoparticles (Ag NPs). Ag NP/paraffin composites (Ag/PW) were prepared by dispersing 0.5, 1.0, 1.5, and 2.0 wt% of Ag NPs stably into molten paraffin using ultra-sonication and then solidifying the mixture. The thermal properties of the composite, such as the thermal conductivity, latent heat capacity, and thermal stability, were characterized by laser flash analysis (LFA), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA), respectively. The degree and trend of the enhancement of the thermal properties differed based on the Ag NP size, and the efficiency increased with a decreasing particle size. In addition, we adopted some theoretical models to describe the behavior of thermal conductivity enhancement in this study. The results were explained by the difference in the interfacial area and degree of construct cluster of the Ag NPs, which were dependent on the particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, Energy Environ. Sci., 4, 3243 (2011).

    Article  CAS  Google Scholar 

  2. B. Scrosati and J. Garche, J. Power Sources, 195, 2419 (2010).

    Article  CAS  Google Scholar 

  3. A. Suwono and G. A. Mansoori, Energ. Source., 16, 117 (1994).

    Article  Google Scholar 

  4. H. Yin, X. Gao, J. Ding and Z. Zhang, Energy Convers. Manag., 49, 1740 (2008).

    Article  CAS  Google Scholar 

  5. S. R. White, P. T. Mather and M. J. Smith, Polym. Eng. Sci., 42, 51 (2002).

    Article  CAS  Google Scholar 

  6. S. Nikkeshi, M. Kudo and T. Masuko, J. Appl. Polym. Sci., 69, 2593 (1998).

    Article  CAS  Google Scholar 

  7. R. Zhang, K.-s. Moon, W. Lin and C. P. Wong, J. Mater. Chem., 20, 2018 (2010).

    Article  CAS  Google Scholar 

  8. S. Wu, H. Wang, S. Xiao and D. Zhu, Procedia Eng., 31, 240 (2012).

    Article  CAS  Google Scholar 

  9. J. Tigner, M. M. Sedeh, T. Sharpe, A. Bufford and T. Floyd-Smith, Appl. Therm. Eng., 60, 88 (2013).

    Article  Google Scholar 

  10. S. Kim and L. T. Drzal, Sol. Energy Mater. Sol. Cells, 93, 136 (2009).

    Article  CAS  Google Scholar 

  11. A. Zabalegui, D. Lokapur and H. Lee, Int. J. Heat Mass Transf., 78, 1145 (2014).

    Article  CAS  Google Scholar 

  12. F. Yavari, H. R. Fard, K. Pashayi, M. A. Rafiee, A. Zamiri, Z. Yu, R. Ozisik, T. Borca-Tasciuc and N. Koratkar, J. Phys. Chem. C, 115, 8753 (2011).

    Article  CAS  Google Scholar 

  13. F.-Y. Yuan, H.-B. Zhang, X. Li, X.-Z. Li and Z.-Z. Yu, Compos. Part A Appl. Sci. Manuf., 53, 137 (2013).

    Article  CAS  Google Scholar 

  14. S. Kemaloglu, G. Ozkoc and A. Aytac, Polym. Compos., 31, 1398 (2010).

    CAS  Google Scholar 

  15. J. Guo, P. Saha, J. Liang, M. Saha and B. P. Grady, J. Therm. Anal. Calorim., 113, 467 (2013).

    Article  CAS  Google Scholar 

  16. J.-W Bae, W Kim, S.-H. Cho and S.-H. Lee, J. Mater: Sci., 35, 5907 (2000).

    Article  CAS  Google Scholar 

  17. N. Tsutsumi, N. Takeuchi and T. Kiyotsukuri, J. Polym. Sci. Part B Polym. Phys., 29, 1085 (1991).

    Article  CAS  Google Scholar 

  18. H. Wu and L. T. Drzal, Polym. Compos., 34, 2148 (2013).

    Article  CAS  Google Scholar 

  19. W Zhou, S. Qi, C. Tu, H. Zhao, C. Wang and J. Kou, J. Appl. Polym. Sci., 104, 1312 (2007).

    Article  CAS  Google Scholar 

  20. K. Pashayi, H. R. Fard, F. Lai, S. Iruvanti, J. Plawsky and T. Borca-Tasciuc, J. Appl. Phys., 111, 104310 (2012).

    Article  CAS  Google Scholar 

  21. T. Shizuma, K. Miyasaka and K. Ishikawa, J. Macromol. Sci. B., 22, 601 (1983).

    Article  Google Scholar 

  22. S.-Y. Fu, X.-Q. Feng, B. Lauke and Y.-W Mai, Compos. B Eng., 39, 933 (2008).

    Article  CAS  Google Scholar 

  23. Z. Zhang and X. Fang, Energy Convers. Manag., 47, 303 (2006).

    Article  CAS  Google Scholar 

  24. A. Sari and A. Karaipekli, Appl Therm. Eng., 27, 127 (2007).

    Article  CAS  Google Scholar 

  25. H. Hiramatsu and F. E. Osterloh, Chem. Mater., 16, 2509 (2004).

    Article  CAS  Google Scholar 

  26. U. Holzwarth and N. Gibson, Nat. Nanotechnol., 6, 534 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. M. Chen, Y.-G. Feng, X. Wang, T.-C. Li, J.-Y. Zhang and D.-J. Qian, Langmuir, 23, 5296 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. B. A. Korgel, S. Fullam, S. Connolly and D. Fitzmaurice, J. Phys. Chem. B, 102, 8379 (1998).

    Article  CAS  Google Scholar 

  29. Chandni, N. Andhariya, O. P. Pandey and B. Chudasama, RSC Adv., 3, 1127 (2013).

    Article  CAS  Google Scholar 

  30. J. Xiang and L. T. Drzal, Sol. Energy Mater. Sol. Cells, 95, 1811 (2011).

    Article  CAS  Google Scholar 

  31. S. C. Lin and H. H. Al-Kayiem, Sol. Energy, 132, 267 (2016).

    Article  CAS  Google Scholar 

  32. B. Li, T. Liu, L. Hu, Y. Wang and L. Gao, ACS Sustain. Chem. Eng., 1, 374 (2013).

    Article  CAS  Google Scholar 

  33. Q. Tang, J. Sun, S. Yu and G. Wang, RSC Adv., 4, 36584 (2014).

    Article  CAS  Google Scholar 

  34. N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo and D. Ruch, Prog. Polym. Sci., 61, 1 (2016).

    Article  CAS  Google Scholar 

  35. J. G. Park, Q. Cheng, J. Lu, J. Bao, S. Li, Y. Tian, Z. Liang, C. Zhang and B. Wang, Carbon, 50, 2083 (2012).

    Article  CAS  Google Scholar 

  36. M. Chirtoc, N. Horny, I. Tavman, A. Turgut, I. Kökey and M. Omastová, Int. J. Therm. Sci., 62, 50 (2012).

    Article  CAS  Google Scholar 

  37. B. L. Zhu, J. Wang, H. Zheng, J. Ma, J. Wu and R. Wu, Compos. B Eng., 69, 496 (2015).

    Article  CAS  Google Scholar 

  38. M. Chirtoc, N. Horny, J.-F. Henry, A. Turgut, I. Kökey, I. Tavman and M. Omastová, Int. J. Thermophys., 33, 2110 (2012).

    Article  CAS  Google Scholar 

  39. D. Yu and Q. An, Polym. Plast. Technol. Eng., 48, 1230 (2009).

    Article  CAS  Google Scholar 

  40. H.S. Kim, J.-u. Jang, J. Yu and S.Y. Kim, Compos. B Eng., 79, 505 (2015).

    Article  CAS  Google Scholar 

  41. J. P. Stora, Nucl. Technol., 17, 225 (1973).

    Article  CAS  Google Scholar 

  42. M. Nabil and J.M. Khodadadi, Int. J. Heat Mass Transf., 67, 301 (2013).

    Article  CAS  Google Scholar 

  43. Z. Hashin and S. Shtrikman, J. Appl. Phys., 33, 3125 (1962).

    Article  CAS  Google Scholar 

  44. P. Keblinski, R. Prasher and J. Eapen, J. Nanopart. Res., 10, 1089 (2008).

    Article  Google Scholar 

  45. V. Ganesan, C. Louis and S. P. Damodaran, J. Phys. Chem. C, 122, 6918 (2018).

    Article  CAS  Google Scholar 

  46. Y. Chen, W. Luo, J. Wang and J. Huang, J. Phys. Chem. C, 121, 12603 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Koo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, IH., Sim, HW., Hong, HH. et al. Effect of filler size on thermal properties of paraffin/silver nanoparticle composites. Korean J. Chem. Eng. 36, 1004–1012 (2019). https://doi.org/10.1007/s11814-019-0282-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0282-2

Keywords

Navigation