Skip to main content
Log in

Reduced graphene oxide supported V2O5-WO3-TiO2 catalysts for selective catalytic reduction of NOx

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We present a reduced-graphene-oxide (rGO)-supported V2O5-WO3-TiO2 (VWTi) catalysts for the efficient selective catalytic reduction of NOx. The rGO support provides well-dispersed functional sites for the nucleation of nanoparticles, allowing the formation of VWTi catalysts with high specific surface areas. The dispersion of the nanoparticles, as observed by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), confirmed the uniform dispersion of the particles on the rGO surface. Detailed Fourier-transform infrared (FT-IR) and NH3 temperature-programmed desorption (NH3-TPD) analyses indicated that the high density of acidic sites provided by the rGO is key to the observed enhancement of NOx removal efficiency, and the rGO-supported catalysts exhibit improved NOx removal efficiencies with smaller amounts of V2O5 and WO3 compared with the commercially available V2O5-WO3-TiO2 catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Andreoli, F. A. Deorsola, C. Galletti and R. Pirone, Chem. Eng. J., 278, 174 (2015).

    Article  CAS  Google Scholar 

  2. J. Hwang, H. J. Ha, J. Ryu, J. J. Choi, C. W. Ahn, J. W Kim, B. D. Hahn, W. H. Yoon, H. Lee and J. H. Choi, Catal. Commun., 94, 1 (2017).

    Article  CAS  Google Scholar 

  3. J. Ko, D. Jin, W. Jang, C. L. Myung, S. Kwon and S. Park, Appl. Energy, 187, 652 (2016).

    Article  CAS  Google Scholar 

  4. C. Qi, W. Bao, L. Wang, H. Li and W. Wu, Catalysts, 7, 110 (2017).

    Article  CAS  Google Scholar 

  5. J. P. Chen and R. T. Yang, Appl. Catal. A, 80, 135 (1992).

    Article  CAS  Google Scholar 

  6. X. Xiao, S. Xiong, B. Li, Y. Geng and S. Yang, Catal. Lett., 146, 2242 (2016).

    Article  CAS  Google Scholar 

  7. J. -H. Choi, S. -K. Kim and Y. -C. Bak, Korean J. Chem. Eng., 18, 719 (2001).

    CAS  Google Scholar 

  8. R. Q. Long and R. T. Yang, J. Catal., 186, 254 (1991).

    Article  Google Scholar 

  9. B. Li, C. Wu, Y. Li and J. Zhang, Environ. Sci. Technol., 45, 7394 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. X. Wu, Z. Si, G. Li, D. Weng and Z. Ma, J. Rare Earths., 29, 64 (2011).

    Article  CAS  Google Scholar 

  11. H. Kamata, S. Ueno, T. Naito and A. Yukimura, Ind. Eng. Chem. Res., 47, 8136 (2008).

    Article  CAS  Google Scholar 

  12. G. Madia, M. Elsener, M. Koebel, F. Raimondi and A. Wokaun, Appl. Catal. A, 39, 181 (2002).

    Article  CAS  Google Scholar 

  13. S. Djerad, L. Tifouti, M. Crocoll and W. Weisweiler, J. Mol. Catal. A: Chem., 208, 257 (2004).

    Article  CAS  Google Scholar 

  14. L. Alemany, L. Lietti, N. Rerlazzo, P. Forzatti, G. Busca, E. Giamello and F. Bregani, J. Catal., 155, 117 (1995).

    Article  CAS  Google Scholar 

  15. V. A. Ehrlich, A. K. Nersesyan, C. Hoelzl, F. Ferk, J. Bichler, E. Valic, A. Schaffer, R. Schulte-Hermann, M. Fenech, K. -H. Wagner and K. Siegfried, Environ. Health Perspect., 116, 1689 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. H. Turkez, E. Sonmez, O. Turkez, Y. I. Mokhtar, A. Di Stefano and G. Turgut, Braz. Arch. Biol. Technol., 57, 532 (2014).

    Article  CAS  Google Scholar 

  17. M. Cao, X. X. Wang, W. Q. Cao and J. Yuna, J. Mater. Chem. C, 3, 6589 (2015).

    Article  CAS  Google Scholar 

  18. Y. Zhu, S. Murali, W. Cai, X. Li, J. Suk, J. R. Potts and R. S. Ruoff, Adv. Mater., 22, 3906 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. W. Su, X. Lu, S. Jia, J. Wang, H. Ma and Y. Xing, Catal. Lett., 145, 1446 (2015).

    Article  CAS  Google Scholar 

  20. K. K. Lee, S. Deng, H. M. Fan, S. Mhaisalkar, H. R. Tan, E. S. Tok, K. P. Loh, W. S. Chin and C. H. Sow, Nanoscale, 4, 2958 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. P. Wang, Y. Zhai, D. Wang and S. Dong, Nanoscale, 3, 1640 (2010).

    Article  CAS  Google Scholar 

  22. S. Mao, S. Cui, G. Lu, K. Yu, Z. Wen and J. Chen, J. Mater. Chem., 22, 11009 (2012).

    Article  CAS  Google Scholar 

  23. M. A-Romero, R. Camposeco, S. Castillo, J. Marin, V. R-Gonzalez, Luz A. G-Serrano and I. M-CenTeno, Fuel, 198, 123 (2017).

    Article  CAS  Google Scholar 

  24. V. -K. Nguyen, J. -H. Park, C. -H. Shin, Korean J. Chem. Eng., 31, 582 (2014).

    Article  CAS  Google Scholar 

  25. D. W. Kwon, K. B. Nam and S. C. Hong, Appl. Catal. A, 497, 160 (2015).

    Article  CAS  Google Scholar 

  26. VGB Technical Association of Large Power Plant Operators, Guideline for the testing of deNOx catalysts, VGB PowerTech, Essen (1998).

    Google Scholar 

  27. X. Lu, C. Song, C. -C. Chang, Y. Teng, Z. Tong and X. Tang, Ind. Eng. Chem. Res., 53, 11601 (2014).

    Article  CAS  Google Scholar 

  28. S. Shen, X. Wang, T. Chen, Z. Feng and C. Li, J. Phys. Chem. C, 118, 12661 (2014).

    Article  CAS  Google Scholar 

  29. B. Shen, T. Liu, N. Zhao, X. Yang and L. Deng, J. Environ. Sci., 22, 1447 (2010).

    Article  CAS  Google Scholar 

  30. H. K. Matralis, Ch. Papadopoulou, Ch. Kordulis, A. Elguezabal and V. Corberan, Appl. Catal. A, 126, 365 (1995).

    Article  CAS  Google Scholar 

  31. C. Wang, S. Yang, H. Chang, Y. Peng and J. Li, Chem. Eng. J., 225, 520 (2013).

    Article  CAS  Google Scholar 

  32. I. Nova and E. Tronconi, Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts, Springer, New York (2014).

    Book  Google Scholar 

  33. P. Kongsong, L. Sikong, S. Niyomwas and V. Rachpech, Sci. World J., 2014, 869706 (2014).

    Article  CAS  Google Scholar 

  34. H. Zheng, C. Y. Neo, X. Mei, J. Qiu and J. Ouyang, J. Mater. Chem., 22, 14465 (2012).

    Article  CAS  Google Scholar 

  35. I. Mjejri, N. Etteyeb and F. Sediri, Mater. Res. Bull., 48, 3335 (2013).

    Article  CAS  Google Scholar 

  36. S. Wang, T. Guo, W. Pan, M. Li, P. Sun, S. Liu, S. Liu, X. Sun and J. Liu, Phys. Chem. Chem. Phys., 19, 5333 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. N. -Y. Topsøe, J. A. Dumesic and H. Topsøe, J. Catal., 151, 241 (1995).

    Article  Google Scholar 

  38. X. Du, X. Gao, K. Qiu, Z. Luo and K. Cen, J. Phys. Chem. C, 119, 1905 (2015).

    Article  CAS  Google Scholar 

  39. C. -H. Lin and H. Bai, Appl. Catal. B, 42, 279 (2003).

    Article  CAS  Google Scholar 

  40. S. -H. Jo, B. Shin, M. -C. Shin, C. J. Van Tyne and H. Lee, Catal. Commun., 57, 134 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Dae Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Ye, B., Jeong, B. et al. Reduced graphene oxide supported V2O5-WO3-TiO2 catalysts for selective catalytic reduction of NOx. Korean J. Chem. Eng. 35, 1988–1993 (2018). https://doi.org/10.1007/s11814-018-0109-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0109-6

Keywords

Navigation