Skip to main content
Log in

A model predictive functional control based on proportional-integral-derivative (PID) and proportional-integral-proportional-derivative (PIPD) using extended non-minimal state space: Application to a molten carbonate fuel cell process

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The performance of most controllers, including proportional-integral-derivative (PID) and proportional-integral-proportional-derivative (PIPD) controllers, depends upon tuning of control parameters. In this study, we propose a novel tuning strategy for PID and PIPD controllers whose control parameters are tuned using the extended non-minimal state space model predictive functional control (ENMSSPFC) scheme based on the auto-regressive moving average (ARMA) model. The proposed control method is applied numerically in the operation of the MCFC process with the parameters of PID and PIPD controllers being optimized by ENMSSPFC based on the ARMA model for the MCFC process. Numerical simulations were carried out to assess the set-point tracking performance and disturbance rejection performance both for the perfect plant model, which represents the ideal case, and for the imperfect plant model, which is usual in practical applications. When there exists uncertainty in the plant model, the PIPD controller exhibits better overall control performance compared to the PID controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Tchamna and M. Lee, Korean J. Chem. Eng., 34(4), 961 (2017).

    Article  CAS  Google Scholar 

  2. M. Xu, S. Li and W. Cai, Ind. Eng. Chem. Res., 44(8), 2848 (2005).

    Article  CAS  Google Scholar 

  3. A. Savran, Appl. Soft Comput., 13(5), 2658 (2013).

    Article  Google Scholar 

  4. R.D. Zhang, P. Li, Z. Ren and S. Wang, 2009 IEEE International Conference on Control and Automation, New Zealand, Christchurch, 314 (2009).

    Book  Google Scholar 

  5. S. Majhi, Ph.D. Dissertation Univ. of Sussex, Brighton, UK (1999).

  6. K. J. Astrom and T. Hagglund, Instrument Society of America, Research Triangle Park, NC (1995).

    Google Scholar 

  7. B.D. Tyreus and W.L. Luyben, Ind. Eng. Chem. Res., 31, 2625 (1992).

    Article  CAS  Google Scholar 

  8. M. Zhuang and D. P. Artherton, IEEE Proc.-D: Control Theory Appl., 140(3), 216 (1993).

    Article  Google Scholar 

  9. P. K. Padhy and S. Majhi, Comput. Chem. Eng., 30(5), 790 (2006).

    Article  CAS  Google Scholar 

  10. K. I. Tsai and C.C. Tsai, Proceedings of the 9th World Congress on Intelligent Control and Automation, IEEE, Taipei, Taiwan, 535 (2011).

    Google Scholar 

  11. R.D. Zhang, Z.X. Cao, P. Li and F.R. Gao, IET Control Theory, 8(14), 1303 (2014).

    Article  Google Scholar 

  12. S. Wu, Ind. Eng. Chem. Res., 53, 5505 (2015).

    Article  CAS  Google Scholar 

  13. S. Wu, Chemometrics and Intelligent Laboratory Systems, 143, 16 (2015).

    Article  CAS  Google Scholar 

  14. H. Zou and H. Li, Chemometrics and Intelligent Laboratory Systems, 142, 1 (2015).

    Article  CAS  Google Scholar 

  15. A.H. Gonzalez, J. M. Perez and D. Odloak, J. Process Control, 19(3), 473 (2009).

    Article  CAS  Google Scholar 

  16. L. Wang and P. C. Young, J. Process Control, 16, 355 (2006).

    Article  CAS  Google Scholar 

  17. R. Zhang, Z. Cao, C. Bo, P. Li and F. Gao, Ind. Eng. Chem. Res., 53, 3283 (2014).

    Article  CAS  Google Scholar 

  18. L. Wang, J. Process Control, 14, 131 (2004).

    Article  CAS  Google Scholar 

  19. R.D. Zhang, A.K. Xue, S.Q. Wang and Z.Y. Ren, J. Process Control, 21(8), 1183 (2011).

    Article  CAS  Google Scholar 

  20. J. H. Hirschenhofer, D.B. Stauffer, R.R. Engleman and M. G. Klett, U.S. Department of Energy Office of Fossil Energy Federal Energy Technology Center, Morgantown (1998).

    Google Scholar 

  21. A. Permatasari, P. Fasahati, J. H. Ryu and J. J. Liu, Korean J. Chem. Eng., 33(12), 3381 (2016).

    Article  CAS  Google Scholar 

  22. J. Zhang, Ind. Eng. Chem. Res., 52, 4874 (2013).

    Article  CAS  Google Scholar 

  23. R. Zhang and F. Gao, Ind. Eng. Chem. Res., 52, 817 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeong Koo Yeo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B.S., Kim, T.Y., Park, T.C. et al. A model predictive functional control based on proportional-integral-derivative (PID) and proportional-integral-proportional-derivative (PIPD) using extended non-minimal state space: Application to a molten carbonate fuel cell process. Korean J. Chem. Eng. 35, 1601–1610 (2018). https://doi.org/10.1007/s11814-018-0068-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0068-y

Keywords

Navigation