Skip to main content
Log in

Enhanced D-ribose production by genetic modification and medium optimization in Bacillus subtilis 168

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

D-ribose, a five-carbon sugar with diverse applications, is mainly produced by transketolase(tkt)-deficient Bacillus subtilis (B. Subtilis). We constructed B.subtilis SFR-3A by replacing the corresponding sites of B. subtilis 168 with the mutation site of tkt in the “wild” D-ribose high-producing strain B. subtilis SFR-4, resulting in 5.29 g/L of D-ribose. In the meantime, B.subtilis SFR-159 was constructed by completely removing the tkt gene of B. subtilis 168 with a higher production of 6.21 g/L. Through medium optimization, batch fermentation of SFR-3A and SFR-159 gave the best result of 27.56 g/L and 29.89 g/L, which corresponds to productivity of 0.51 g/L/h and 0.41 g/L/h, respectively. In this work, SFR-3A showed more latent capacity over SFR-159 as to productivity and had greater potential to serve as a platform for D-ribose production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. I. Sasajima and M. Yoneda, Agr. Biol. Chem., 35(4), 509, (1971).

    CAS  Google Scholar 

  2. P. De Wulf and E. J. Vandamme, Appl. Microbiol. Biotechnol., 48, 141 (1997).

    Article  CAS  Google Scholar 

  3. D. F. Pauly and C. J. Pepine, J. Cardiovasc. Pharmacol. Ther., 5(4), 249, (2000).

    Article  CAS  Google Scholar 

  4. D. Maccarter, N. Vijay, M. Washam, L. Shecterle and H. Sierminski, Int. J. Cardiol., 137(1), 79, (2009).

    Article  Google Scholar 

  5. Y. C. Park, S. G. Kim, K. Park, K. H. Lee and J. H. Seo, Appl. Microbiol. Biotechnol., 66, 297 (2004).

    Article  CAS  Google Scholar 

  6. M. H. Toivari, H. Maacheimo, M. Penttilä and L. Ruohonen, Appl. Microbiol. Biotechnol., 85, 731 (2000).

    Article  Google Scholar 

  7. H. C. Park, Y. J. Kim, C. W. Lee, Y. T. Rhlo, J. W. Kang, D. H. Lee, Y. J. Seong, Y. C. Park, D. Lee and S. G. Kim, Process. Biochem., 52, 73 (2017).

    Article  CAS  Google Scholar 

  8. R. K. Srivastava, S. K. Maiti, D. Das, P. M. Bapat, K. Batta, M. Bhushan and P. P. Wangikar, J. Ind. Microbiol. Biotechnol., 39, 1227 (2012).

    Article  CAS  Google Scholar 

  9. R. K. Srivastava and P. P. Wangikar, J. Chem. Technol. Biotechnol., 83, 1110 (2008).

    Article  CAS  Google Scholar 

  10. R.K. Srivastava, R. Jaiswal, D. Panda and P. P. Wangikar, Biotechnol. Bioeng., 102, 1387 (2009).

    Article  CAS  Google Scholar 

  11. P. D. Wulf, W. Soetaert, D. Schwengers and E. J. Vandamme, J. Appl. Microbiol., 83, 25 (1997).

    Article  Google Scholar 

  12. R. Nijland, J. G. Burgess, J. Errington and J. W. Veening, PLOS ONE, 5(3), e9724, (2010).

    Article  Google Scholar 

  13. T. Fang, X. C. Chen, N. Li, H. Song, J. X. Bai, J. Xiong and H. J. Ying, Korean J. Chem. Eng., 27(6), 1725, (2010).

    Article  CAS  Google Scholar 

  14. Y. C. Park and J. H. Seo, J. Microbiol. Biotechnol., 14(4), 665, (2004).

    CAS  Google Scholar 

  15. Z. Wei, J. Zhou, W. J. Sun, F. J. Cui, Q. H. Xu and C. F. Liu, BioMed Research International, Article ID 535097 (2015).

    Google Scholar 

  16. L. Wu, Z. M. Li and Q. Ye, J. Ind. Microbiol. Biotechnol., 36, 1289 (2009).

    Article  CAS  Google Scholar 

  17. Y. C. Park, H. J. Lee, C. S. Kim and J. H. Seo, J. Microbiol. Biotechnol., 23(4), 560, (2013).

    Article  CAS  Google Scholar 

  18. J. Cheng, W. Zhuang, N. N. Li, C. L. Tang and H. J. Ying, Lett. Appl. Microbiol., 64, 73 (2017).

    Article  CAS  Google Scholar 

  19. Y. C. Park, J. H. Choi, G. N. Bennett and J. H. Seo, J. Biothchnol., 121, 508 (2006).

    Article  CAS  Google Scholar 

  20. E. Belda, A. Sekowska, F. F. Le, A. Morgat, D. Mornico, C. Ouzounis, D. Vallenet, M. Claudine and A. Danchin, Microbiology, 159, 757 (2013).

    Article  CAS  Google Scholar 

  21. X. Y. Zhao, J. J. Liu, J.X. Zhang and P. W. Li, Food Drug., 7(3), 23, (2005).

    Google Scholar 

  22. N. A. Shevchuk, A. V. Bryksin, Y. A. Nusinovich, F. C. Cabello, M. Sutherland and S. Ladisch, Nucleic Acids Res., 32(2), e19, (2004).

    Article  Google Scholar 

  23. X. Yan, H. J. Yu, Q. Hong and S. P. Li, Appl. Environ. Microb., 74(17), 5556, (2008).

    Article  CAS  Google Scholar 

  24. J. Spizizen, Proc. Natl. Acad Sci. U.S.A., 44, 1072 (1958).

    Article  CAS  Google Scholar 

  25. Y. J. Tian, Y.X. Fan, J. J. Liu, X.Y. Zhao and W. Chen, Electron. J. Biotechnol., 19, 41 (2016).

    Article  CAS  Google Scholar 

  26. J. Saxena and R. S. Tanner, World J. Microbiol. Biotechnol., 28(4), 1553, (2012).

    Article  CAS  Google Scholar 

  27. P. D. Wulf, W. Soetaert, D. Schwengers and E. J. Vandamme, J. Ind. Microbiol., 17(2), 104, (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Ying Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Zhao, XY., Liu, JJ. et al. Enhanced D-ribose production by genetic modification and medium optimization in Bacillus subtilis 168. Korean J. Chem. Eng. 35, 1137–1143 (2018). https://doi.org/10.1007/s11814-017-0356-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0356-y

Keywords

Navigation