Skip to main content
Log in

Electrochemical synthesis, characterization and application of a microstructure Cu3(BTC)2 metal organic framework for CO2 and CH4 separation

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The electrochemical route is a promising and environmentally friendly technique for fabrication of metal organic frameworks (MOFs) due to mild synthesis condition, short time for crystal growth and ease of scale up. A microstructure Cu3(BTC)2 MOF was synthesized through electrochemical path and successfully employed for CO2 and CH4 adsorption. Characterization and structural investigation of the MOF was carried out by XRD, FE-SEM, TGA, FTIR and BET analyses. The highest amount of carbon dioxide and methane sorption was 26.89 and 6.63 wt%, respectively, at 298 K. The heat of adsorption for CO2 decreased monotonically, while an opposite trend was observed for CH4. The results also revealed that the selectivity of the developed MOF towards CO2 over CH4 enhanced with increase of pressure and composition of carbon dioxide component as predicted by the ideal adsorption solution theory (IAST). The regeneration of as-synthesized MOF was also studied in six consecutive cycles and no considerable reduction in CO2 adsorption capacity was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. R. Abid, Z. H. Rada, J. Shang and S. Wang, Polyhedron (2016).

    Google Scholar 

  2. C. Stewart and M.-A. Hessami, Energy Convers. Manage., 46, 403 (2005).

    Article  CAS  Google Scholar 

  3. A. K. Adhikari and K.-S. Lin, Chem. Eng. J., 284, 1348 (2016).

    Article  CAS  Google Scholar 

  4. H. C. Yoon, P. B. S. Rallapalli, S. S. Han, H. T. Beum, T. S. Jung, D. W. Cho, M. Ko and J.-N. Kim, Korean J. Chem. Eng., 32, 2501 (2015).

    Article  CAS  Google Scholar 

  5. Y. He, W. Zhou, G. Qian and B. Chen, Chem. Soc. Rev., 43, 5657 (2014).

    Article  CAS  Google Scholar 

  6. M. G. Waller, E. D. Williams, S. W. Matteson and T. A. Trabold, Appl. Energy, 127, 55 (2014).

    Article  Google Scholar 

  7. S. Choi, J. H. Drese and C. W. Jones, ChemSusChem, 2, 796 (2009).

    Article  CAS  Google Scholar 

  8. X. Wang, L. Chen and Q. Guo, Chem. Eng. J., 260, 573 (2015).

    Article  CAS  Google Scholar 

  9. Y. Li, H. Yi, X. Tang, F. Li and Q. Yuan, Chem. Eng. J., 229, 50 (2013).

    Article  CAS  Google Scholar 

  10. L. Liu, D. Nicholson and S. K. Bhatia, J. Phys. Chem. C, 119, 407 (2014).

    Article  Google Scholar 

  11. H. Yi, F. Li, P. Ning, X. Tang, J. Peng, Y. Li and H. Deng, Chem. Eng. J., 215, 635 (2013).

    Article  Google Scholar 

  12. C. Shen, C. A. Grande, P. Li, J. Yu and A. E. Rodrigues, Chem. Eng. J., 160, 398 (2010).

    Article  CAS  Google Scholar 

  13. F. Raganati, V. Gargiulo, P. Ammendola, M. Alfe and R. Chirone, Chem. Eng. J., 239, 75 (2014).

    Article  CAS  Google Scholar 

  14. K. Munusamy, G. Sethia, D.V. Patil, P. B. S. Rallapalli, R. S. Somani and H. C. Bajaj, Chem. Eng. J., 195, 359 (2012).

    Article  Google Scholar 

  15. C. Janiak and J. K. Vieth, New J. Chem., 34, 2366 (2010).

    Article  CAS  Google Scholar 

  16. A. Martinez Joaristi, J. Juan-Alcañiz, P. Serra-Crespo, F. Kapteijn and J. Gascon, Cryst. Growth Des., 12, 3489 (2012).

    Article  CAS  Google Scholar 

  17. J. R. Long and O. M. Yaghi, Chem. Soc. Rev., 38, 1213 (2009).

    Article  CAS  Google Scholar 

  18. H. Al-Kutubi, J. Gascon, E. J. Sudhölter and L. Rassaei, ChemElec-troChem, 2, 462 (2015).

    Article  CAS  Google Scholar 

  19. D.-W. Jung, D.-A. Yang, J. Kim, J. Kim and W.-S. Ahn, Dalton Trans., 39, 2883 (2010).

    Article  CAS  Google Scholar 

  20. Z. Ni and R. I. Masel, J. Am Chem. Soc., 128, 12394 (2006).

    Article  CAS  Google Scholar 

  21. S. Khazalpour, V. Safarifard, A. Morsali and D. Nematollahi, RSC Adv., 5, 36547 (2015).

    Article  CAS  Google Scholar 

  22. R. Ameloot, L. Stappers, J. Fransaer, L. Alaerts, B. F. Sels and D. E. De Vos, Chem. Mater., 21, 2580 (2009).

    Article  CAS  Google Scholar 

  23. A. U. Czaja, N. Trukhan and U. Müller, Chem. Soc. Rev., 38, 1284 (2009).

    Article  CAS  Google Scholar 

  24. S. S.-Y. Chui, S. M.-F. Lo, J. P. Charmant, A. G. Orpen and I. D. Williams, Science, 283, 1148 (1999).

    Article  CAS  Google Scholar 

  25. K. Schlichte, T. Kratzke and S. Kaskel, Micropor. Mesopor. Mater., 73, 81 (2004).

    Article  CAS  Google Scholar 

  26. M. Gaab, N. Trukhan, S. Maurer, R. Gummaraju and U. Müller, Micropor. Mesopor. Mater., 157, 131 (2012).

    Article  CAS  Google Scholar 

  27. P. Silva, S. M. Vilela, J. P. Tomé and F. A. A. Paz, Chem. Soc. Rev., 44, 6774 (2015).

    Article  CAS  Google Scholar 

  28. A. Grondein and D. Bélanger, Fuel, 90, 2684 (2011).

    Article  CAS  Google Scholar 

  29. S. Khoshhal, A. A. Ghoreyshi, M. Jahanshahi and M. Mohammadi, RSC Adv., 5, 24758 (2015).

    Article  CAS  Google Scholar 

  30. B. Sun, S. Kayal and A. Chakraborty, Energy, 76, 419 (2014).

    Article  CAS  Google Scholar 

  31. T. M. Letcher, Thermodynamics, solubility and environmental issues, Elsevier (2007).

    Google Scholar 

  32. B. Wu, Y. Zhang and H. Wang, J. Phys. Chem. B, 113, 12332 (2009).

    Article  CAS  Google Scholar 

  33. W. Caminati, S. Melandri, A. Maris and P. Ottaviani, Angew. Chem. Int. Ed., 45, 2438 (2006).

    Article  CAS  Google Scholar 

  34. M. Hartmann, S. Kunz, D. Himsl, O. Tangermann, S. Ernst and A. Wagener, Langmuir, 24, 8634 (2008).

    Article  CAS  Google Scholar 

  35. J. Li, J. Yang, L. Li and J. Li, J. Energy Chem., 23, 453 (2014).

    Article  Google Scholar 

  36. F. Martínez, R. Sanz, G. Orcajo, D. Briones and V. Yángüez, Chem. Eng. Sci., 142, 55 (2016).

    Article  Google Scholar 

  37. S. Bhadauria, A. Nanoti, S. Dasgupta, S. Divekar, P. Gupta and R. Chauhan, RSC Adv., 6, 93003 (2016).

    Article  Google Scholar 

  38. S. Salehi and M. Anbia, Energy Fuels, 31, 5376 (2017).

    Article  CAS  Google Scholar 

  39. N. Al-Janabi, P. Hill, L. Torrente-Murciano, A. Garforth, P. Gorgojo, F. Siperstein and X. Fan, Chem. Eng. J., 281, 669 (2015).

    Article  CAS  Google Scholar 

  40. M. Schlesinger, S. Schulze, M. Hietschold and M. Mehring, Micropor. Mesopor. Mater., 132, 121 (2010).

    Article  CAS  Google Scholar 

  41. R. S. Kumar, S. S. Kumar and M.A. Kulandainathan, Micropor. Mesopor. Mater., 168, 57 (2013).

    Article  Google Scholar 

  42. I. Ardelean and S. Cora, J. Mater. Sci.: Mater. Electronics, 19, 584 (2008).

    CAS  Google Scholar 

  43. F. Banisheykholeslami, A. A. Ghoreyshi, M. Mohammadi and K. Pirzadeh, CLEAN-Soil, Air, Water, 43, 1084 (2015).

    Article  CAS  Google Scholar 

  44. H. Wu, J. M. Simmons, G. Srinivas, W. Zhou and T. Yildirim, J. Phys. Chem. Lett., 1, 1946 (2010).

    Article  CAS  Google Scholar 

  45. G. Limousin, J.-P. Gaudet, L. Charlet, S. Szenknect, V. Barthes and M. Krimissa, Appl. Geochem., 22, 249 (2007).

    Article  CAS  Google Scholar 

  46. C. Zhu, Z. Zhang, B. Wang, Y. Chen, H. Wang, X. Chen, H. Zhang, N. Sun, W. Wei and Y. Sun, Micropor. Mesopor. Mater., 226, 476 (2016).

    Article  CAS  Google Scholar 

  47. Z. H. Rada, H.R. Abid, J. Shang, Y. He, P. Webley, S. Liu, H. Sun and S. Wang, Fuel, 160, 318 (2015).

    Article  CAS  Google Scholar 

  48. H. R. Abid, Z. H. Rada, J. Shang and S. Wang, Polyhedron, 120, 103 (2016).

    Article  CAS  Google Scholar 

  49. J. Du and G. Zou, Inorg. Chem. Commun., 69, 20 (2016).

    Article  CAS  Google Scholar 

  50. H. Qiu, L. Lv, B.-c. Pan, Q.-j. Zhang, W.-m. Zhang and Q.-x. Zhang, J. Zhejiang University-Science A, 10, 716 (2009).

    Article  CAS  Google Scholar 

  51. N. Lazaridis and D. Asouhidou, Water Res., 37, 2875 (2003).

    Article  CAS  Google Scholar 

  52. E. Mehrvarz, A. A. Ghoreyshi and M. Jahanshahi, Front. Chem. Sci. Eng., 11, 252 (2017).

    Article  CAS  Google Scholar 

  53. I. Prasetyo and D. Do, Chem. Eng. Sci., 53, 3459 (1998).

    Article  CAS  Google Scholar 

  54. S. Chowdhury and R. Balasubramanian, J. CO2 Util., 13, 50 (2016).

    Article  CAS  Google Scholar 

  55. Z. Bao, L. Yu, Q. Ren, X. Lu and S. Deng, J. Colloid Interface Sci., 353, 549 (2011).

    Article  CAS  Google Scholar 

  56. H. Zhimin, Y. Guocong and D. Barba, J. Chem. Ind. Eng. (China), 44, 143 (1993).

    Google Scholar 

  57. A. Myers and J. M. Prausnitz, AIChE J., 11, 121 (1965).

    Article  CAS  Google Scholar 

  58. Z. Zhang, S. Xian, Q. Xia, H. Wang, Z. Li and J. Li, AIChE J., 59, 2195 (2013).

    Article  CAS  Google Scholar 

  59. P. Mishra, S. Mekala, F. Dreisbach, B. Mandal and S. Gumma, Sep. Purif. Technol., 94, 124 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Asghar Ghoreyshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirzadeh, K., Ghoreyshi, A.A., Rahimnejad, M. et al. Electrochemical synthesis, characterization and application of a microstructure Cu3(BTC)2 metal organic framework for CO2 and CH4 separation. Korean J. Chem. Eng. 35, 974–983 (2018). https://doi.org/10.1007/s11814-017-0340-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0340-6

Keywords

Navigation