Skip to main content
Log in

Mesoporous alumina with high capacity for carbon monoxide adsorption

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Carbon monoxide, CO, is an anthropogenic toxic pollutant and its mixture is easily flammable by heated surfaces and open flames. Thus, developing effective adsorbents with a high uptake capacity to adsorb CO from incomplete burned air and flammable gases containing CO is required. Because nanoporous materials are reported to show high performance as adsorbents, we prepared mesoporous alumina (MA) and used it as the CO adsorbent. MA prepared by the post-hydrolysis method showed pore properties such as a uniform pore size, an interlinked pore system, and a large surface area, as compared to commercial adsorbents (activated carbon, zeolite, and silica powder). Adsorption isotherm test was carried out to evaluate the adsorption performance of the as-prepared MA. In addition, Pd-nanodots were immobilized on the MA to enhance the uptake capacity of CO. MA exhibited six to seven-times higher uptake capacity for CO than commercial adsorbents, and its maximum uptake capacity increased 1.3–3.1 times through Pd-nanodots loading. Although the larger surface area of adsorbents is an important factor for ideal adsorbents, a regular and interlinked pore system of adsorbents was found to be more crucial factor to adsorb CO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sato, W. Kosaka, R. Matsuda, A. Hori, Y. Hijikata, R.V. Belosludov, S. Sakaki, M. Takata and S. Kitagawa, Science, 343, 167 (2014).

    Article  CAS  Google Scholar 

  2. E. Barea, C. Montoro and J.A.R. Navarro, Chem. Soc. Rev., 43, 5419 (2014).

    Article  CAS  Google Scholar 

  3. E. A. Sandilands and D. N. Bateman, Medicine, 44, 151 (2016).

    Article  Google Scholar 

  4. Carbon monoxide in the workplace, Industrial Accident Prevention Association (2008).

  5. Environmental health criteria 213 Carbon monoxide, International Programme on Chemical Safety, World Health Organization (1999).

  6. T. G. Glover, G. W. Peterson, B. J. Schindler, D. Britt and O. Yaghi, Chem. Eng. Sci., 66, 163 (2011).

    Article  Google Scholar 

  7. S. E. Lehman and S. C. Larsen, Environ. Sci.: Nano, 1, 200 (2014).

    CAS  Google Scholar 

  8. A. Walcarius and L. Mercier, J. Mater. Chem., 20, 4478 (2010).

    Article  CAS  Google Scholar 

  9. W. S. Chiang, E. Fratini, P. Baglioni, J. H. Chen and Y. Liu, Langmuir, 6, 8849 (2016).

    Article  Google Scholar 

  10. A. Hanif, S. Dasgupta and A. Nanoti, Chem. Eng. J., 15, 703 (2015).

    Article  Google Scholar 

  11. Y. Belmabkhout, G. D. Weireld and A. Sayari, Langmuir, 25, 13275 (2009).

    Article  CAS  Google Scholar 

  12. C. Zamani, X. Illa, S. Abdollahzadeh-Ghom, J. R. Morante and A. R. Rodriguez, Nanoscale Res. Lett., 4, 1303 (2009).

    Article  CAS  Google Scholar 

  13. C. T. Hung and H. Bai, Chem. Eng. Sci., 63, 1997 (2008).

    Article  CAS  Google Scholar 

  14. J. A. Thote, R. V. Chatti, K. S. Iyer, V. Kumar, A. N. Valechha, N. K. Labhsetwar, R. B. Biniwale, M. K. N. Yenkie and S. S. Rayalu, J. Environ. Sci., 24, 1979 (2012).

    Article  CAS  Google Scholar 

  15. C. Chen and W. S. Ahn, Chem. Eng. J., 1666, 646 (2011).

    Article  Google Scholar 

  16. Y. Kim, C. Kim, I. Choi, S. Rengaraj and J. Yi, Environ. Sci. Technol., 38, 924 (2004).

    Article  CAS  Google Scholar 

  17. Y. Kim, B. Lee and J. Yi, Korean J. Chem. Eng., 24, 679 (2007).

    Article  CAS  Google Scholar 

  18. S. Rengaraj, J.W. Yeon, Y. Kim and W. H. Kim, Ind. Eng. Chem. Res., 46, 2834 (2007).

    Article  CAS  Google Scholar 

  19. Y. Kim, C. Kim and J. Yi, Mater. Res. Bull., 39, 2103 (2004).

    Article  CAS  Google Scholar 

  20. D.R. Raner, M. C. Wu, D. I. Mahon and D.W. Goodman, J. Vac. Sci. Technol., 14, 1184 (2996).

    Article  Google Scholar 

  21. K. Fottinger, R. Schlogl and G. Rupprechter, Chem. Comm., 320 (2008).

    Google Scholar 

  22. M. I. H. Mohideen, B. Xiao, P. S. Wheatley, A. C. McKinlay, Y. Li, A.M.Z. Slawin, D.W. Aldous, N. F. Cessford, T. Duren, X. Zhao, R. Gill, K.M. Thomas, J.M. Griffin, S.E. Ashbrook and R.E. Morris, Nature Chem., 3, 304 (2011).

    Article  CAS  Google Scholar 

  23. S. Liu, J. Colloid Interface Sci., 450, 224 (2015).

    Article  CAS  Google Scholar 

  24. M. Bastos-Neto, A. Moeller, R. Staudt, J. Bohm and R. Glaser, Sep. Purif. Technol., 77, 251 (2011).

    Article  CAS  Google Scholar 

  25. Y. Wang, C. Bryan, H. Xu, P. Pohl, Y. Yang and C. J. Brinker, J. Colloid Interface Sci., 254, 23 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younghun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeom, C., Kim, Y. Mesoporous alumina with high capacity for carbon monoxide adsorption. Korean J. Chem. Eng. 35, 587–593 (2018). https://doi.org/10.1007/s11814-017-0309-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0309-5

Keywords

Navigation