Skip to main content
Log in

Usage of a deep eutectic solvent based on three compounds for toluene separation

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The separation of toluene from a mixture composed of toluene and heptane was carried out in the presence of a deep eutectic solvent (DES). The DES used in this study was synthesized using choline chloride, urea and glycerol with mole ratio of 1 : 2 : 1. The liquid-liquid equilibria (LLE) of the ternary system of toluene, heptane, and DES were determined at atmospheric pressure and three temperatures of 298.2-313.2 K with an interval of 10 K. The distribution coefficients and selectivities of toluene were reported. Only a small amount of heptane was detected in the extract phase, resulting in high value of selectivity. The experimental LLE data were reasonably well correlated using non-random two-liquid (NRTL) model. The ab initio results revealed that the interactions between the DES and toluene are stronger than those between DES and heptane, which may be a reasonable explanation for the high value of selectivity in this ternary system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Market study: toluene, http://www.ceresana.com/en/market-studies/chemicals/toluene/ (Accessed on 4 April 2017).

  2. S. Mulyono, H.F. Hizaddin, I.M. Alnashef, M.A. Hashim, A.F. Fakeeha and M.K. Hadj-Kali, RSC Adv., 4, 17597 (2014).

    Article  CAS  Google Scholar 

  3. N. R. Rodriguez, T. Gerlach, D. Scheepers, M. C. Kroon and I. Smirnova, J. Chem. Thermodynam., 104, 128 (2017).

    Article  CAS  Google Scholar 

  4. C.-W. Choi, S. Stolte and Y.-S. Yun, Scientific Reports, 6, 33403 (2016).

    Article  Google Scholar 

  5. A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed and V. Tambyrajah, Chem. Commun., 70 (2003).

    Google Scholar 

  6. M. Nawshad, M. I. Hossain, Z. Man, M. El-Harbawi, M.A. Bustam, Y.A. Noaman, N. B. M. Alitheen, M. K. Ng, G. Hefter and C.-Y. Yin, J. Chem. Eng. Data, 57, 2191 (2012).

    Article  Google Scholar 

  7. W. Tang, W. Liu, G. Liu, T. Zhu and K. H. Row, Korean J. Chem. Eng., 34, 814 (2017).

    Article  CAS  Google Scholar 

  8. D. A. Alonso, A. Baeze, R. Chinchilla, G. Guillena, I. M. Pastor and D. J. Ramon, Eur. J. Org. Chem., 612 (2016).

    Google Scholar 

  9. A. Abo-Hamad, M. Hayyan, M. A. H. AlSaad and M. A. Hashim, Chem. Eng. J., 273, 551 (2015).

    Article  CAS  Google Scholar 

  10. P.K. Naik, P. Dehury, S. Paul and T. Banerjee, Fluid Phase Equilib., 423, 146 (2016).

    Article  CAS  Google Scholar 

  11. N.R. Rodriguez, P.F. Requejo and M.C. Kroon, Ind. Eng. Chem. Res., 54, 11404 (2015).

    Article  CAS  Google Scholar 

  12. T. Jiao, H. Wang, F. Dai, C. Li and S. Zhang, Ind. Eng. Chem. Res., 55, 8848 (2016).

    Article  CAS  Google Scholar 

  13. G. Garcia, M. Atilhan and S. Aparicio, Chem. Phys. Lett., 634, 151 (2015).

    Article  CAS  Google Scholar 

  14. F. Qasim, H.C. Choi, J. S. Shin and S. J. Park, Korean J. Chem. Eng., 33, 2179 (2016).

    Article  CAS  Google Scholar 

  15. H. Renon and J. M. Prausnitz, AIChE J., 14, 135 (1968).

    Article  CAS  Google Scholar 

  16. Gaussian 09W, M. J. Frisch, G.W. Trucks, H.B. Schlegel, G. E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K. N. Kudin, J.C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D. J. Fox, T. Keith, M.A. Al- Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P. M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian, Inc., Wallingford CT, 2013.

    Google Scholar 

  17. S. Grimme, J. Comp. Chem., 27, 1787 (2006).

    Article  CAS  Google Scholar 

  18. S. F. Boys and F. Bernardi, Mol. Phys., 19, 533 (1970).

    Article  Google Scholar 

  19. H. Sun, Y. Li, X. Wu and G. Li, J. Mol. Model., 19, 2433 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YoonKook Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.Y., Park, Y. Usage of a deep eutectic solvent based on three compounds for toluene separation. Korean J. Chem. Eng. 35, 210–213 (2018). https://doi.org/10.1007/s11814-017-0244-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0244-5

Keywords

Navigation