Skip to main content
Log in

Preparation and characterization of a porous silicate material from silica fume

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A porous silicate material derived from silica fume was successfully prepared and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FT-IR) spectroscopy, Thermogravimetry and Differential thermal gravity (TG-DTG), N2 adsorption and desorption isotherms, and scanning electron microscopy (SEM). Raw silica fume was analyzed by XRD, FT-IR and SEM. The analysis results of silica fume indicated that SiO2 in silica fume is mainly determined as amorphous state, and that the particles of raw silica fume exhibited characteristic spherical structure with a diameter of from 50 nm to 200 nm. The preparation of the porous silicate material involved two steps. The first step was the extraction of the SiO 2−3 leachate from raw silica fume. The maximum value of SiO 2−3 extraction yield was obtained under the following conditions: reaction temperature of 120 °C, reaction time of 120 min, NaOH concentration of 15%, and alkali to SiO2 molar ratio of 2. The second step was the preparation of the porous silicate material though the reaction of SiO 2−3 leachate and Ca(OH)2 suspension liquid. The optimum preparation conditions were as follows: preparation temperature of 90 °C, preparation time of 1.5 h, Si/Ca molar ratio of 1 : 1, and stirring rate of 100 r/min. The BET surface area and pore size of the porous silicate material were 220.7 m2·g−1 and 8.55 cm3/g, respectively. The porous silicate material presented an amorphous and unordered structure. The spectroscopic results indicated that the porous silicate material was mainly composed of Si, Ca, O, C, and Na, in the form of Ca2+, SiO 2−3 , CO 2−3 and Na+ ions, respectively, which agreed with the XRD, TG-DSC, and FT-IR data. The N2 adsorption-desorption isotherm mode indicates that the porous silicate material belonged to a typical mesoporous material. The porous silicate material presented efficiency for the removal of formaldehyde: it showed a formaldehyde adsorption capacity of 8.01 mg/g for 140 min at 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Li, A. H. Korayem, C. Li, Y. Liu, H. He, J. G. Sanjayan and W. H. Duan, Constr Build Mater., 123 (2016).

    Google Scholar 

  2. Z. Jinliang, G. Zhancheng, Z. Xin and T. Huiqing, Chin. J. Pro. Eng., 12 (2012).

    Google Scholar 

  3. C. Zhou, C. Yan, J. Zhao, H. Wang, Q. Zhou and W. Luo, J. Taiwan. Inst. Chem. E, 62 (2016).

    Google Scholar 

  4. H. Ji, Z. Huang, K. Chen, W. Li, Y. Gao, M. Fang, Y. Liu and X. Wu, Powder. Technol., 252 (2014).

    Google Scholar 

  5. M. Mastali and A. Dalvand, Constr. Build. Mater., 125 (2016).

    Google Scholar 

  6. M. Fakhri and F. Saberi. K, J. Clean. Prod., 129 (2016).

    Google Scholar 

  7. A. A. Ramezanianpour, Springer Berlin Heidelberg, 193 (2014).

    Google Scholar 

  8. L. Lijuan, L. Tielong and J. Zhaohui, Chin. J. Enviro. Eng., 4 (2010).

    Google Scholar 

  9. V. Lilkov, O. Petrov, D. Kovacheva, I. Rostovsky, Y. Tzvetanova, V. Petkova and N. Petrova, Constr. Build. Mater., 124 (2016).

    Google Scholar 

  10. F. N. Okoye, J. Durgaprasad and N. B. Singh, Ceram. Int., 42 (2016).

    Google Scholar 

  11. H. Gaoping and X. Weidong, Henan. Chem. Ind., 07 (2006).

    Google Scholar 

  12. Z. Deyi, F. Huixia, L. Heming, W. Yi, C. Xuefu and W. Yanjun, Chin. Non-Metallic. Miner. Ind., 5 (2009).

    Google Scholar 

  13. W. Li, X. Ping, Y. Xu, H. Li, Z. Yi and Y. Tang, Concrete., 6 (2011).

    Google Scholar 

  14. H. Zhu, Shandong University of Science and Technology Doctor Degree (2009).

    Google Scholar 

  15. H, Hai, Y. Zhang, Y. Zhang, J. Sun and Z. Hao, Chin. J. Enviro. Eng., 11 (2017).

    Google Scholar 

  16. 16. J. Zhang, Z. Guo, X. Z and H. T, Chinese J. Environ. Eng., 12, 2 (2012).

  17. Azouaoua N, Sadaou Z, Djaafri A, et al., J. Hazar. Mater., 184 (2010).

    Google Scholar 

  18. Anirudhan T S, RadhakrishLnan P G, Thermodynamics., 40 (2008).

    Google Scholar 

  19. I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918).

    Article  CAS  Google Scholar 

  20. S. Onisei, Y. Pontikes, T.V. Gerven, G. N. Angelopoulos, T. Velea, V. Predica and P. Moldovan, J. Hazard. Mater., 101 (2012).

    Google Scholar 

  21. Y. Gao, H. Huang, W. Tang, X. Liu, X. Yang and J. Zhang, Micropor. Mesopor. Mater., 217 (2015).

    Google Scholar 

  22. G. J. Maximo, A. J. A. Meirelles and E. A. C. Batista, Fluid Phase Equilibr., 299 (2010).

    Google Scholar 

  23. R. Wang, Y. Zhai, Z. Ning and P. Ma, T Nonferr Metal Soc., 24 (2014).

    Google Scholar 

  24. R.R. Yadav, S.N. Mudliar, A.Y. Shekh, A.B. Fulke, S.S. Devi, K. Krishnamurthi, A. Juwarkar and T. Chakrabarti, Process Biochem., 47 (2012).

    Google Scholar 

  25. J. Sun, Z. Wu, H. Cheng, Z. Zhang and R. L. Frost, Spectro. Act. Part A: Mole. and Biomo. Spec., 117 (2014).

    Google Scholar 

  26. X. Yang, X. Liu, W. Tang, Y. Gao, H. Ni and J. Zhang, Korean J. Chem. Eng., 34, 3 (2017).

    Google Scholar 

  27. L. Li, Y. Zhang, Y. Zhang, J. Sun and Z. Hao, J. Therm. Anal. Calorim. (2016), DOI:10.1007/s10973-016-5711-4.

    Google Scholar 

  28. H. Zaitan, D. Bianchi, O. Achak and T. Chafik, J. Hazard. Mater., 153 (2008).

    Google Scholar 

  29. A. Meiszterics, L. Rosta, H. Peterlik, J. Rohonczy, S. Kubuki, P. Henits and K. Sinko, J. Phys. Chem. A, 114 (2010).

    Google Scholar 

  30. Y. Zhang, Q. Liu, Z. Wu, Q. Zheng and H. Cheng, J. Therm. Anal. Calorim. (2012), DOI:10.1007/s10973-011-2038-z.

    Google Scholar 

  31. Y. Zhang, Q. Liu, Z. Wu and Y. Zhang, J. Therm. Anal. Calorim. (2015), DOI:10.1007/s10973-015-4652-7.

    Google Scholar 

  32. P. Xiaoqin, Z. Huixing, J. Xiaohua and X. Guowei, J. Chin. Cer. Soc., 36 (2008).

    Google Scholar 

  33. P. Xiaoqin, H. Fang, Z. Le, Qi. Xuejun and T. Yuanyan, J. Southwest Jiaotong Univ., 44 (2009).

    Google Scholar 

  34. H. Jilin, L. Xin, X. Hanning, Y. Zhishu and P. Yangxi, Inorgan Chem. Ind., 41 (2009).

    Google Scholar 

  35. H. Jingnan, S. Junmin, X. Xuebin, Y. Huibin and L. Yungai, Bulle. Chin. Cer. Soc., 35 (2016).

    Google Scholar 

  36. W. Tang, H. Huang, Y. Gao, X. Liu, X. Yang, H. Ni and J. Zhang, Mater. Des., 88 (2015).

    Google Scholar 

  37. B. Özkaya, J. Hazard. Mater., B 129, 158 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinmin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Qi, H., Li, Y. et al. Preparation and characterization of a porous silicate material from silica fume. Korean J. Chem. Eng. 34, 3185–3194 (2017). https://doi.org/10.1007/s11814-017-0228-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0228-5

Keywords

Navigation