Skip to main content
Log in

New hybrid agarose/Cu-Bioglass® biomaterials for antibacterial coatings

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Agarose hydrogels, combined with 45S5 Bioglass®, were elaborated to serve as copper delivery systems. Our aim was to study the antibacterial properties of these hydrogels. The results show that the amount of glass does not influence the stiffness properties, but it improves the hydrophilicity and the swelling profile of agarose hydrogel. Two bacterial strains, Bacillus sp. 4J6 and Pseudomonas aeruginosa sp. PAO1, were chosen. Their retention on the substrates was analyzed by confocal laser scanning microscopy. The mechanical characteristics and the release of copper have an effect on the bacterial adhesion and the biofilm formation. All the obtained results indicate that these hydrogels could be adapted to a potential application to the antibacterial coatings

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Chen, T. Ushida and T. Tateishi, Macromol. Bioscience, 2, 67 (2002).

    Article  CAS  Google Scholar 

  2. M. A. Barbosa, P. L. Granja, C. C. Barrias and I. F. Amaral, ITBMRBM, 26, 212 (2005).

  3. E. Wers, H. Oudadesse, B. Lefeuvre, O. Merdrignac-Conanec and A. Barroug, Appl. Surf. Sci., 353, 200 (2015).

    Article  CAS  Google Scholar 

  4. L. Nie, D. Chen, J. Suo, P. Zou, S. Feng, Q. Yang, S. Yang and S. Ye, Colloid Surf., B, 100, 169 (2012).

    Article  CAS  Google Scholar 

  5. U. Kneser, P. M. Kaufmann, H. C. Fiegel, J. M. Pollok, D. Kluth, H. Herbst and X. Rogiers, J. Biomed. Mater. Res., 47, 494 (1999).

    Article  CAS  Google Scholar 

  6. T. Hadlock, C. Sundback, D. Hunter, M. Cheney and J. P. Vacanti, Tissue Eng., 6, 119 (2000).

    Article  CAS  Google Scholar 

  7. S. L. Ishaug, G. M. Crane, M. J. Miller, A. W. Yasko, M. J. Yaszemski and A. G. Mikos, J. Biomed. Mater. Res., 6, 17 (1997).

    Article  Google Scholar 

  8. B. W. Trautner and R. O. Darouiche, Am. J. Infect. Control., 32, 177 (2004).

    Article  Google Scholar 

  9. W. Seong Toh and X. Jun Loh, Mat. Sci. Eng. C, 45, 690 (2014).

    Article  Google Scholar 

  10. R. Rao, A. Perterson, J. Ceccarili, A. Putnam and J. Stegemann, Angiogenesis, 15, 253 (2012).

    Article  CAS  Google Scholar 

  11. L. L. Y Chiu and M. Radisic, J. Control. Release, 155, 376 (2011).

    Article  Google Scholar 

  12. H. Naderi-Meshkin, K. Andreas, M. M. Matin, M. Sittinger, H. R. Bidkhori, N. Ahmadiankia, A. R. Bahrami and J. Ringe, Cell. Biol. Int., 38, 72 (2014).

    Article  CAS  Google Scholar 

  13. H. Kong and D. Mooney, Polysaccharide-based hydrogels in tissue engineering, New York (2005).

    Google Scholar 

  14. V. Zamora-Mora, D. Velasco, R. Hernández, C. Mijangos and E. Kumacheva, Carbohyd. Polym., 111, 348 (2014).

    Article  CAS  Google Scholar 

  15. E. Wers, B. Lefeuvre, P. Pellen-Mussi, A. Novella and H. Oudadesse, Mat. Sci. Eng. C, 61, 133 (2016).

    Article  CAS  Google Scholar 

  16. M. Bellantone, N. J. Coleman and L. L. Hench, J. Biomed. Mater. Res., 51, 484 (2000).

    Article  CAS  Google Scholar 

  17. R. Barbucci, S. Lamponi, A. Magnani, F. M. Piras, A. Rossi and E. Weber, Biomacromolecules, 6, 212 (2005).

    Article  CAS  Google Scholar 

  18. P. Giavaresi, P. M. Torricelli, R. Fornasari, R. B. Giardino and G. Leone, Biomater., 26, 3001 (2005).

    Article  CAS  Google Scholar 

  19. G. F. Hu, J. Cell. Biochem., 69, 326 (1998).

    Article  CAS  Google Scholar 

  20. L. M. Barangou, C. R. Daubert and E. A. Foegeding, Food Hydrocolloid., 20, 184 (2006).

    Article  Google Scholar 

  21. E. E Smith, D. G. Buckley, Z. Wu, C. Saenphimmachak, L. R. Hoffman, D. A. D’Argenio, S. I. Miller, B. W. Ramsey, D. P. Speert, S. M. Moskowitz, J. L. Burns, R. Kaul and M. V. Olson, Proc. Natl. Acad. Sci., 103, 8487 (2006).

    Article  Google Scholar 

  22. C. Guegan, J. Garderes, G. Le Pennec, F. Gaillard, F. Fay, I. Linossier, J.-M. Herry, M.-N. Bellon Fontaine and K. Vallée-Réhel, Colloid. Surf., B, 114, 193 (2014).

    Article  CAS  Google Scholar 

  23. S. J. Kim, S. J. Park and S. I. Kim, React. Funct. Polym., 55, 53 (2003).

    Article  CAS  Google Scholar 

  24. J. Chen and K. Park, J. Control. Release, 65, 73 (2000).

    Article  CAS  Google Scholar 

  25. J. W. Rhim, S.-B Lee and S.-I Hong, J. Food Sci., 76, 40 (2011).

    Article  Google Scholar 

  26. Institute of Medicine (US) Panel on Micronutrients, Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc, National Academies Press (2001).

  27. R. J. Moore, C. B. Hall, E. C. Carlson, H. C. Lukaski and L. M. Klevay, J. Lab. Clin. Med., 13, 516 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Wers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wers, E., Lefeuvre, B. New hybrid agarose/Cu-Bioglass® biomaterials for antibacterial coatings. Korean J. Chem. Eng. 34, 2241–2247 (2017). https://doi.org/10.1007/s11814-017-0132-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0132-z

Keywords

Navigation