Skip to main content

Advertisement

Log in

Co-processing of heavy oil with wood biomass using supercritical m-xylene and n-dodecane solvents

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Heavy oil was co-processed with wood biomass by using supercritical m-xylene and n-dodecane. The effects of the solvent, temperature, hydrogen, and catalyst on vacuum residue (VR) upgrading were evaluated using residue conversion, coke formation, and product distribution as performance parameters. VR was subjected to co-processing with microcrystalline cellulose (cellulose) or oil palm empty fruit bunch fiber (EFB), and the parameters were compared with those obtained from VR upgrading. Co-processing of VR/cellulose using a catalyst and hydrogen led to higher conversion (72.6 wt%) than co-processing of VR/EFB at 400 °C and the highest yield of light product (65.7 wt%). Using the Fe3O4 catalyst with H2 for co-processing positively influenced generation of the light product fraction. VR upgrading and co-processing using supercritical solvents could eliminate a certain amount of sulfur compounds from heavy oil. Co-processing of wood biomass with petroleum feedstocks in existing oil refineries can reduce the capital costs of bulk treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. Speight, The chemistry and technology of petroleum, CRC Press (2014).

    Google Scholar 

  2. C. Leyva, M. S. Rana, F. Trejo and J. Ancheyta, Catal. Today, 141, 168 (2009).

    Article  CAS  Google Scholar 

  3. J. Marques, D. Guillaume, I. Merdrignac, D. Espinat and S. Brunet, Appl. Catal. B-Environ., 101, 727 (2011).

    Article  CAS  Google Scholar 

  4. M. S. Rana, V. Sámano, J. Ancheyta and J. A. I. Diaz, Fuel, 86, 1216 (2007).

    Article  CAS  Google Scholar 

  5. M. Watanabe, S.-n. Kato, S. Ishizeki, H. Inomata and R. L. Smith Jr., J. Supercrit. Fluids, 53, 48 (2010).

    Article  CAS  Google Scholar 

  6. J. Park and S. Son, Korean J. Chem. Eng., 28, 455 (2011).

    Article  CAS  Google Scholar 

  7. Y. H. Oh, I. Y. Eom, J. C. Joo, J. H. Yu, B. K. Song, S. H. Lee, S. H. Hong and S. J. Park, Korean J. Chem. Eng., 32, 1945 (2015).

    Article  CAS  Google Scholar 

  8. H. Lee, Y.-M. Kim, I.-G. Lee, J.-K. Jeon, S.-C. Jung, J. D. Chung, W. G. Choi and Y.-K. Park, Korean J. Chem. Eng., 33, 3299 (2016).

    Article  CAS  Google Scholar 

  9. C. Xu, S. Hamilton, A. Mallik and M. Ghosh, Energy Fuels, 21, 3490 (2007).

    Article  CAS  Google Scholar 

  10. D. S. Scott, D. Radlein, J. Piskorz, P. Majerski and T. J. W. deBruijn, Fuel, 80, 1087 (2001).

    Article  CAS  Google Scholar 

  11. T. T. Viet, J.-H. Lee, J. W. Ryu, I.-S. Ahn and C.-H. Lee, Fuel, 94, 556 (2012).

    Article  CAS  Google Scholar 

  12. T. T. Viet, J. H. Lee, F. Ma, G. R. Kim, I. S. Ahn and C. H. Lee, Fuel, 103, 553 (2013).

    Article  CAS  Google Scholar 

  13. D.-W. Kim, F. Ma, A. Koriakin, S.-Y. Jeong and C.-H. Lee, Energy Fuels, 29, 2319 (2015).

    Article  CAS  Google Scholar 

  14. X. Huang, T. I. Korányi, M. D. Boot and E. J. M. Hensen, ChemSusChem, 7, 2276 (2014).

    Article  CAS  Google Scholar 

  15. D. A. Cantero, M. D. Bermejo and M. J. Cocero, ChemSusChem, 8, 1026 (2015).

    Article  CAS  Google Scholar 

  16. A. Koriakin, H. Van Nguyen, D. W. Kim and C.-H. Lee, J. Supercrit. Fluids, 95, 175 (2014).

    Article  CAS  Google Scholar 

  17. M. Sasaki, Z. Fang, Y. Fukushima, T. Adschiri and K. Arai, Ind. Eng. Chem. Res., 39, 2883 (2000).

    Article  CAS  Google Scholar 

  18. Q. Cao, L. e. Jin, W. Bao and Y. Lv, Fuel Process. Technol., 90, 337 (2009).

    Article  CAS  Google Scholar 

  19. J. D. Martínez, A. Veses, A. M. Mastral, R. Murillo, M. V. Navarro, N. Puy, A. Artigues, J. Bartrolí and T. García, Fuel Process. Technol., 119, 263 (2014).

    Article  Google Scholar 

  20. Z. Zhu, S. S. Toor, L. Rosendahl, D. Yu and G. Chen, Energy, 80, 284 (2015).

    Article  CAS  Google Scholar 

  21. N. N. Nassar and M. M. Husein, Fuel Process. Technol., 91, 164 (2010).

    Article  CAS  Google Scholar 

  22. E. Fumoto, T. Tago and T. Masuda, Energy Fuels, 20, 1 (2006).

    Article  CAS  Google Scholar 

  23. W.-I. Choi, J.-Y. Park, J.-P. Lee, Y.-K. Oh, Y. C. Park, J. S. Kim, J. M. Park, C. H. Kim and J.-S. Lee, Biotechnol. Biofuels, 6, 1 (2013).

    Article  Google Scholar 

  24. A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton and D. Crocker, Laboratory Analytical Procedure, 1617 (2008).

  25. D.-W. Kim, A. Koriakin and C.-H. Lee, Fuel, 181, 895 (2016).

    Article  CAS  Google Scholar 

  26. M. Azhar Uddin, H. Tsuda, S. Wu and E. Sasaoka, Fuel, 87, 451 (2008).

    Article  Google Scholar 

  27. E. Karimi, I. F. Teixeira, A. Gomez, E. de Resende, C. Gissane, J. Leitch, V. Jollet, I. Aigner, F. Berruti, C. Briens, P. Fransham, B. Hoff, N. Schrier, R. M. Lago, S.W. Kycia, R. Heck and M. Schlaf, Appl. Catal. B-Environ., 145, 187 (2014).

    Article  CAS  Google Scholar 

  28. S. Funai, E. Fumoto, T. Tago and T. Masuda, Chem. Eng. Sci., 65, 60 (2010).

    Article  CAS  Google Scholar 

  29. V. Arunajatesan, K. A. Wilson and B. Subramaniam, Ind. Eng. Chem. Res., 42, 2639 (2003).

    Article  CAS  Google Scholar 

  30. J. Scherzer and A. J. Gruia, Hydrocracking science and technology, CRC Press (1996).

    Google Scholar 

  31. P. M. Rahimi and T. Gentzis, Fuel Process. Technol., 80, 69 (2003).

    Article  CAS  Google Scholar 

  32. K. Sjöström, G. Chen, Q. Yu, C. Brage and C. Rosén, Fuel, 78, 1189 (1999).

    Article  Google Scholar 

  33. M. Lapuerta, J. J. Hernández, A. Pazo and J. López, Fuel Process. Technol., 89, 828 (2008).

    Article  CAS  Google Scholar 

  34. C. Brage, Q. Yu, G. Chen and K. Sjöström, Biomass Bioenerg., 18, 87 (2000).

    Article  CAS  Google Scholar 

  35. T. Kaneko, K. Tazawa, T. Koyama, K. Satou, K. Shimasaki and Y. Kageyama, Energy Fuels, 12, 897 (1998).

    Article  CAS  Google Scholar 

  36. W. L. T. M. Ramselaar, M. W. J. Crajé, R. H. Hadders, E. Gerkema, V. H. J. de Beer and A. M. van der Kraan, Appl. Catal., 65, 69 (1990).

    Article  CAS  Google Scholar 

  37. N. N. Nassar, M. M. Husein and P. Pereira-Almao, Fuel Process. Technol., 91, 169 (2010).

    Article  CAS  Google Scholar 

  38. S. W. Poulton, M. D. Krom and R. Raiswell, Geochim. Cosmochim. Acta, 68, 3703 (2004).

    Article  CAS  Google Scholar 

  39. O. Lahav, G. Ritvo, I. Slijper, G. Hearne and M. Cochva, Aquaculture, 238, 263 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Ha Lee.

Additional information

This article is dedicated to Prof. Ki-Pung Yoo on the occasion of his retirement from Sogang University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DW., Koriakin, A., Jeong, SY. et al. Co-processing of heavy oil with wood biomass using supercritical m-xylene and n-dodecane solvents. Korean J. Chem. Eng. 34, 1961–1969 (2017). https://doi.org/10.1007/s11814-017-0109-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0109-y

Keywords

Navigation