Skip to main content
Log in

Insight into adsorption mechanism of cationic dye onto agricultural residues-derived hydrochars: Negligible role of π-π interaction

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Hydrochars derived from golden shower pod (GSH), coconut shell (CCH), and orange peel (OPH) were synthesized and applied to remove methylene green (MG5). The results indicated that the hydrochars possessed low specific surface areas (6.65-14.7m2/g), but abundant oxygen functionalities (1.69-2.12mmol/g). The hydrochars exhibited cellular and spherical morphologies. Adsorption was strongly dependent on the solution pH (2-10) and ionic strength (0-0.5M NaCl). Equilibrium can be quickly established in the kinetic study (60-120 min). The maximum Langmuir adsorption capacities at 30 °C followed the order GSH (59.6mg/g)>CCH (32.7mg/g)>OPH (15.6mg/g)> commercial glucose-prepared hydrochar (12.6mg/g). The dye adsorption efficiency was determined by the concentrations of oxygen-containing functionalities on the hydrochar surface. The adsorption process occurred spontaneously (− ΔGo) and exothermically (−ΔHo). Desorption studies confirmed the reversible adsorption process. Oxygenation of the hydrochar surface through a hydrothermal process with acrylic acid contributed to increasing MG5 adsorption and identifying the negligible role of π-π interaction to the adsorption process. The analysis of Fourier transform infrared spectrometry demonstrated that the aromatic C=C peak did not significantly decrease in intensity or shift toward higher/lower wavenumbers after adsorption, which further confirms the insignificant contribution of π-π interaction. Electrostatic attraction played a major role in adsorption mechanisms, while minor contributions were accounted for hydrogen bonding and n-π interactions. The primary adsorption mechanisms of MG5 onto hydrochar were similar to biosorbent, but dissimilar to biochar and activated carbon (i.e., π-π interaction and pore filling).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.M.D. Chequer, G.A.R. de Oliveira, E.R.A. Ferraz, J.C. Cardoso, M.V.B. Zanoni and D. P. de Oliveira, Eco-friendly Textile Dyeing and Finishing, INTECH Publishers, 151 (2013).

  2. N. P. Raval, P.U. Shah and N.K. Shah, Environ. Sci. Pollut. r., 23, 14810 (2016).

    Article  CAS  Google Scholar 

  3. G. Crini, Bioresour. Technol., 97, 1061 (2006).

    Article  CAS  Google Scholar 

  4. E. Contreras, L. Sepúlveda and C. Palma, Int. J. Chem. Eng., 2012, 1 (2012).

    Article  Google Scholar 

  5. N. Feng, X. Guo and S. Liang, J. Hazard. Mater., 164, 1286 (2009).

    Article  CAS  Google Scholar 

  6. H. N. Tran, S.-J. You and H.-P. Chao, Waste Manage. Res., 34, 129 (2016).

    Article  CAS  Google Scholar 

  7. J. S. Cha, S. H. Park, S. C. Jung, C. Ryu, J. K. Jeon, M. C. Shin and Y. K. Park, J. Ind. Eng. Chem., 40, 1 (2016).

    Article  CAS  Google Scholar 

  8. H. N. Tran, Y.-F. Wang, S.-J. You and H.-P. Chao, Trans. IChemE Process Saf. Environ. Prot., (2017), DOI:10.1016/j.psep.2017.02.010.

    Google Scholar 

  9. H. N. Tran, S.-J. You and H.-P. Chao, J. Environ. Manage., 188, 322 (2017).

    Article  CAS  Google Scholar 

  10. J.A. Libra, K. S. Ro, C. Kammann, A. Funke, N.D. Berge, Y. Neubauer, M.M. Titirici, C. Fühner, O. Bens, J. Kern and K.H. Emmerich, Biofuels, 2, 71 (2011).

    Article  CAS  Google Scholar 

  11. A. Jain, R. Balasubramanian and M. P. Srinivasan, Chem. Eng. J., 283, 789 (2016).

    Article  CAS  Google Scholar 

  12. H.N. Tran, S.-J. You and H.-P. Chao, Adsorpt. Sci. Technol., (2017), DOI:10.1177/0263617416684837.

    Google Scholar 

  13. A. Funke and F. Ziegler, Biofuel. Bioprod. Bior., 4, 160 (2010).

    Article  CAS  Google Scholar 

  14. H.N. Tran, F.-C. Huang, C.-K. Lee and H.-P. Chao, Green Process. Synth., (2017), DOI:10.1515/gps-2016-0178.

    Google Scholar 

  15. S. L. Goertzen, K.D. Thériault, A. M. Oickle, A. C. Tarasuk and H. A. Andreas, Carbon, 48, 1252 (2010).

    Article  CAS  Google Scholar 

  16. M. Sevilla and A.B. Fuertes, Chem. Eur. J., 15, 4195 (2009).

    Article  CAS  Google Scholar 

  17. M. Sevilla and A.B. Fuertes, Carbon, 47, 2281 (2009).

    Article  CAS  Google Scholar 

  18. M. Sevilla, J. A. Maciá-Agulló and A.B. Fuertes, Biomass Bioenergy, 35, 3152 (2011).

    Article  CAS  Google Scholar 

  19. M. Sevilla, A. B. Fuertes and R. Mokaya, Energy Environ. Sci., 4, 1400 (2011).

    Article  CAS  Google Scholar 

  20. M. Dogan, H. Abak and M. Alkan, J. Hazard. Mater., 164, 172 (2009).

    Article  CAS  Google Scholar 

  21. Y. Guo, S. Yang, W. Fu, J. Qi, R. Li, Z. Wang and H. Xu, Dyes Pigments, 56, 219 (2003).

    Article  CAS  Google Scholar 

  22. S. Lagergren, Ksver. Veterskapsakad. Handl., 24, 1 (1898).

    Google Scholar 

  23. G. Blanchard, M. Maunaye and G. Martin, Water Res., 18, 1501 (1984).

    Article  CAS  Google Scholar 

  24. S. H. Chien and W.R. Clayton, Soil Sci. Soc. Am. J., 44, 265 (1980).

    Article  CAS  Google Scholar 

  25. H.N. Tran, S.-J. You and H.-P. Chao, Chem. Eng. Commun., (2017), DOI:10.1016/j.watres.2017.04.014.

    Google Scholar 

  26. H.N. Tran, S.-J. You and H.-P. Chao, J. Environ. Chem. Eng., 4, 2671 (2016).

    Article  CAS  Google Scholar 

  27. J.A. Mattson, H. B. Mark, M.D. Malbin, W. J. Weber and J. C. Crittenden, J. Colloid Interface Sci., 31, 116 (1969).

    Article  CAS  Google Scholar 

  28. B. Xing, W. B. McGill, M. J. Dudas, Y. Maham and L. Hepler, Environ. Sci. Technol., 28, 466 (1994).

    Article  CAS  Google Scholar 

  29. L.R. Radovic, C. Moreno-Castilla and J. Rivera-Utrilla, Chemistry and physics of carbon, Marcel Dekker, Inc., New York, 27, 227 (2000).

    Google Scholar 

  30. R.W. Coughlin and F. S. Ezra, Environ. Sci. Technol., 2, 291 (1968).

    Article  CAS  Google Scholar 

  31. R. S. Blackburn, Environ. Sci. Technol., 38, 4905 (2004).

    Article  CAS  Google Scholar 

  32. M. A. Al-Ghouti, M.A.M. Khraisheh, S. J. Allen and M.N. Ahmad, J. Environ. Manage., 69, 229 (2003).

    Article  CAS  Google Scholar 

  33. M.D. Huff and J.W. Lee, J. Environ. Manage., 165, 17 (2016).

    Article  CAS  Google Scholar 

  34. R. Demir-Cakan, N. Baccile, M. Antonietti and M. M. Titirici, Chem. Mater., 21, 484 (2009).

    Article  CAS  Google Scholar 

  35. J. Xu, L. Wang and Y. Zhu, Langmuir, 28, 8418 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai Nguyen Tran, Sheng-Jie You or Huan-Ping Chao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, H.N., You, SJ. & Chao, HP. Insight into adsorption mechanism of cationic dye onto agricultural residues-derived hydrochars: Negligible role of π-π interaction. Korean J. Chem. Eng. 34, 1708–1720 (2017). https://doi.org/10.1007/s11814-017-0056-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0056-7

Keywords

Navigation