Skip to main content

Advertisement

Log in

Ni/La2O3-ZrO2 catalyst for hydrogen production from steam reforming of acetic acid as a model compound of bio-oil

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Hydrogen production from steam reforming of acetic acid was investigated over Ni/La2O3-ZrO2 catalyst. A series of Ni/La2O3-ZrO2 catalysts were synthesized by sol-gel method coupled with wet impregnation, which was characterized by XRD, BET, TEM, EDS, TG, SEM and TPR. Catalytic activity of Ni/La2O3-ZrO2 was evaluated by steam reforming of acetic acid at the temperature range of 550-750 °C. The tetragonal phase La0.1Zr0.9O1.95 is formed through the doping of La2O3 into the ZrO2 lattice and nickel species are highly dispersed on the support with high specific surface area. H2 yield and CO2 yield of Ni/La2O3-ZrO2 catalyst with 15%wt Ni reaches 89.27% and 80.41% at 600 °C, respectively, which is attributed to high BET surface area and sufficient Ni active sites in strong interaction with the support. 15%wt Ni supported on La2O3-ZrO2 catalyst maintains relatively stable catalytic activities for a period of 20 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Z. Lang, R. R. Arnepalli and A. A. Tiwari, J. Nanosci. Nanotechnol., 11, 3719 (2011).

    Article  CAS  Google Scholar 

  2. N. L. Panwar, R. Kothari and V. V. Tyagi, Renew. Sust. Energy Rev., 16, 1801 (2012).

    Article  CAS  Google Scholar 

  3. S. A. Chattanathan, S. Adhikari and N. Abdoulmoumine, Renew. Sust. Energy Rev., 16, 2366 (2012).

    Article  Google Scholar 

  4. P. M. Mortensen, J. D. Grunwaldt, P. A. Jensen, K. G. Knudsen and A. D. Jensen, Appl. Catal. A, 407, 1 (2011).

    Article  CAS  Google Scholar 

  5. S. R. Wang, Y. R. Wang, Q. J. Cai, X. Y. Wang, H. Jin and Z. Y. Luo, Sep. Purif. Technol., 122, 248 (2014).

    Article  Google Scholar 

  6. S. R. Wang, Q. J. Cai, X. Y. Wang, L. Zhang, Y. R. Wang and Z. Y. Luo, Energy Fuels, 28, 115 (2014).

    Article  Google Scholar 

  7. R. Trane, S. Dahl, M. S. Skjoth-Rasmussen and A. D. Jensen, Int. J. Hydrogen Energy, 37, 6447 (2012).

    Article  CAS  Google Scholar 

  8. X. X. Zheng, C. F. Yan, R. R. Hu, J. Li, H. Hai, W. M. Luo, C. Q. Guo, W. B. Li and Z. Y. Zhou, Int. J. Hydrogen Energy, 37, 12987 (2012).

    Article  CAS  Google Scholar 

  9. Q. Wang, S. R. Wang, X. B. Li and L. Guo, Bioresources, 8, 2897 (2013).

    Google Scholar 

  10. A. C. Basagiannis and X. E. Verykios, Appl. Catal. A-Gen., 308, 182 (2006).

    Article  CAS  Google Scholar 

  11. P. Mohanty, M. Patel and K. K. Pant, Bioresour. Technol., 123, 558 (2012).

    Article  CAS  Google Scholar 

  12. T. Montini, L. DeRogatis, V. Gombac, P. Fornasiero and M. Graziani, Appl. Catal. B-Environ., 71, 125 (2007).

    Article  CAS  Google Scholar 

  13. F. Bimbela, M. Oliva, J. Ruiz, L. García and J. Arauzo, J. Anal. Appl. Pyrolysis, 79, 112 (2007).

    Article  CAS  Google Scholar 

  14. J. Román Galdámez, L. García and R. Bilbao, Energy Fuels, 19, 1133 (2005).

    Article  Google Scholar 

  15. J. A. Medrano, M. Oliva, J. Ruiz, L. Garcia and J. Arauzo, Int. J. Hydrogen Energy, 33, 4387 (2008).

    Article  CAS  Google Scholar 

  16. J. A. Medrano, M. Oliva, J. Ruiz, L. García and J. Arauzo, J. Anal. Appl. Pyrolysis, 85, 214 (2009).

    Article  CAS  Google Scholar 

  17. F. Bimbela, D. Chen, J. Ruiz, L. Garcia and J. Arauzo, Appl. Catal. B: Environ., 119-120, 1 (2012).

    Article  CAS  Google Scholar 

  18. S. R. Wang, X. B. Li, F. Zhang, Q. J. Cai, Y. R. Wang and Z. Y. Luo, Int. J. Hydrogen Energy, 38, 16038 (2013).

    Article  CAS  Google Scholar 

  19. S. R. Wang, Q. J. Cai, F. Zhang, X. B. Li, L. Zhang and Z. YLuo, Int. J. Hydrogen Energy, 39, 18675 (2014).

    Article  CAS  Google Scholar 

  20. J. L. Lu, B. S. Fu, M. C. Kung, G. M. Xiao, J. W. Elam, H. H. Kung and P. C. Stair, Science, 335, 1205 (2012).

    Article  CAS  Google Scholar 

  21. M. A. Khan and S. I. Woo, Korean J. Chem. Eng., 31, 1204 (2014).

    Article  CAS  Google Scholar 

  22. H. J. Lee, G. S. Shin and Y. C. Kim, Korean J. Chem. Eng., 32, 1267 (2015).

    Article  CAS  Google Scholar 

  23. Z. K. Li, X. Hu, L. J. Zhang, S. M. Liu and G. X. Lu, Appl. Catal. a-Gen., 417, 281 (2012).

    Article  Google Scholar 

  24. H. Z. Feng, P. Q. Lan and S. F. Wu, Int. J. Hydrogen Energy, 37, 14161 (2012).

    Article  CAS  Google Scholar 

  25. G. Pantaleo, V. LaParola, F. Deganello, P. Calatozzo, R. Bal and A. M. Venezia, Appl. Catal. B-Environ., 164, 135 (2015).

    Article  CAS  Google Scholar 

  26. B. M. Guell, I. M. T. da Silva, K. Seshan and L. Lefferts, Appl. Catal. B-Environ., 88, 59 (2009).

    Article  Google Scholar 

  27. X. Hu and G. X. Lu, Catal. Commun., 12, 50 (2010).

    Article  CAS  Google Scholar 

  28. S. H. Park, B. H. Chun and S. H. Kim, Korean J. Chem. Eng., 28, 402 (2011).

    Article  CAS  Google Scholar 

  29. W. Tao, G. W. Cheng, W. L. Yao, X. G. Lu, Q. H. Zhu, G. S. Li and Z. F. Zhou, Int. J. Hydrogen Energy, 39, 18650 (2014).

    Article  CAS  Google Scholar 

  30. T. F. Hou, B. Yu, S. Y. Zhang, J. H. Zhang, D. Z. Wang, T. K. Xu, L. Cui and W. J. Cai, Appl. Catal. B-Environ., 168, 524 (2015).

    Article  Google Scholar 

  31. Y. Z. Chen, B. J. Liaw, C. F. Kao and J. C. Kuo, Appl. Catal. A-Gen., 217, 23 (2001).

    Article  CAS  Google Scholar 

  32. A. Rumplecker, F. Kleitz, E. L. Salabas and F. Schuth, Chem. Mater., 19, 485 (2007).

    Article  CAS  Google Scholar 

  33. M. M. Nair, S. Kaliaguine and F. Kleitz, Acs Catal., 4, 3837 (2014).

    Article  CAS  Google Scholar 

  34. G. Wu, C. Zhang, S. Li, Z. Huang, S. Yan, S. Wang, X. Ma and J. Gong, Energy Environ. Sci., 5, 8942 (2012).

    Article  CAS  Google Scholar 

  35. C. Jimenez-Gonzalez, Z. Boukha, B. de Rivas, J. J. Delgado, M. A. Cauqui, J. R. Gonzalez-Velasco, J. I. Gutierrez-Ortiz and R. Lopez-Fonseca, Appl. Catal. A-Gen., 466, 9 (2013).

    Article  CAS  Google Scholar 

  36. F. G. E. Nogueira, P. G. M. Assaf, H. W. P. Carvalho and E. M. Assaf, Appl. Catal. B-Environ., 160, 188 (2014).

    Article  Google Scholar 

  37. H. S. Roh, K. W. Jun, W. S. Dong, J. S. Chang, S. E. Park and Y. I. Joe, J. Mol. Catal. A-Chem., 181, 137 (2002).

    Article  CAS  Google Scholar 

  38. R. R. Hu, C. F. Yan, X. X. Zheng, H. Liu and Z. Y. Zhou, Int. J. Hydrogen Energy, 38, 6033 (2013).

    Article  CAS  Google Scholar 

  39. P. G. M. Assaf, F. G. E. Nogueira and E. M. Assaf, Catal. Today, 213, 2 (2013).

    Article  CAS  Google Scholar 

  40. K. K. Pant, P. Mohanty, S. Agarwal and A. K. Dalai, Catal. Today, 207, 36 (2013).

    Article  CAS  Google Scholar 

  41. K. Takanabe, K. Aika, K. Seshan and L. Lefferts, Chem. Eng. J., 120, 133 (2006).

    Article  CAS  Google Scholar 

  42. F. Bossola, C. Evangelisti, M. Allieta, R. Psaro, S. Recchia and V. Dal Santo, Appl. Catal. B-Environ., 181, 599 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-feng Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Yp., Yan, Cf., Zhao, Xy. et al. Ni/La2O3-ZrO2 catalyst for hydrogen production from steam reforming of acetic acid as a model compound of bio-oil. Korean J. Chem. Eng. 34, 305–313 (2017). https://doi.org/10.1007/s11814-016-0277-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0277-1

Keywords

Navigation