Skip to main content

Advertisement

Log in

CO2 fixation and lipid production by microalgal species

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Microalgal species Nannochloropsis limnetica, Botryococcus braunii, and Stichococcus bacillaris were compared for their ability to grow, remove CO2, and accumulate lipids in their biomass under CO2-enriched atmosphere. Overall, N. limnetica outperformed the other two cultures and distinctly exhibited higher specific growth rate (0.999 d−1) and CO2 fixation rate (0.129 gL−1 d−1) with a high specific lipid yield (40% w/w). The volumetric CO2 fixation rate for all three species was validated with biomass productivity and mass transfer methods (P<0.005 and R2=0. 98). At 10% CO2, N. limnetica showed one-and-a-half times more carbon fixation efficiency over B. braunii, and S. bacillaris. On the other hand, total fatty acids of N. limnetica dispalyed an apparent increase in oleic acid. Whereas, under similar conditions, N. limnetica exhibited reduced eicosapentaenoic acid. These findings suggest that at high CO2 conditions, N. limnetica proved to be an efficient CO2 capture algal system and can be considered for biofuel applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Lee, G.-G. Choi, Y.-E. Choi, M. Sung, M. S. Park, J.-W. Yang, Korean J. Chem. Eng., 31, 1036 (2014).

    Article  CAS  Google Scholar 

  2. T. Mutanda, D. Ramesh, S. Karthikeyan, S. Kumari, A. Anandraj and F. Bux, Bioresour. Technol., 102, 57 (2011).

    Article  CAS  Google Scholar 

  3. S.R. Ronda, P.L.C. Parupudi, S. Vemula, S. Tumma, M. Botlagunta, V. S. Settaluri, S. Lele, S. Sharma and C. Kandala, Korean J. Chem. Eng., 31, 1839 (2014).

    Article  CAS  Google Scholar 

  4. É. C. Francisco, D. B. Neves, E. Jacob-Lopes and T. T. Franco, J. Chem. Technol. Biotechnol., 85, 395 (2010).

    Article  CAS  Google Scholar 

  5. L. Krienitz and M. Wirth, Limnologica, 36, 204 (2006).

    Article  CAS  Google Scholar 

  6. P. Cheng, B. Ji, L. Gao, W. Zhang, J. Wang and T. Liu, Bioresour. Technol., 138, 95 (2013).

    Article  CAS  Google Scholar 

  7. G. Olivieri, A. Marzocchella, R. Andreozzi, G. Pinto and A. Pollio, J. Chem. Technol. Biotechnol., 86, 776 (2011).

    Article  CAS  Google Scholar 

  8. J. Liu, J. Mukherjee, J. J. Hawkes and S. J. Wilkinson, J. Chem. Technol. Biotechnol., 88, 1807 (2013).

    Article  CAS  Google Scholar 

  9. F. Mus, J.P. Toussaint, K.E. Cooksey, M.W. Fields, R. Gerlach, B. M. Peyton and R. P. Carlson, Appl. Microbiol. Biotechnol., 97, 3625 (2013).

    Article  CAS  Google Scholar 

  10. C. Yoo, S. Y. Jun, J. Y. Lee, C. Y. Ahn and H.M. OH, Bioresour. Technol., 101, S71 (2010).

    Article  CAS  Google Scholar 

  11. S.Y. Chiu, C.Y. Kao, M.T. Tsai, S. C. Ong, C. H. Chen and C. S. Lin, Bioresour. Technol., 100, 833 (2009).

    Article  CAS  Google Scholar 

  12. G. Olivieri, I. Garganoa, R. Andreozzia, R. Marottaa, A. Marzocchellaa, G. Pintob and A. Polliob, Chem. Eng. Trans., 27, 127 (2012).

    Google Scholar 

  13. G. Olivieri, I. Gargano, R. Andreozzi, R. Marotta, A. Marzocchella, G. Pinto and A. Pollio, Biochem. Eng. J., 74, 8 (2013).

    Article  CAS  Google Scholar 

  14. Y. T. Huang, H. T. Lee and C.W. Lai, J. Nanosci. Nanotechnol., 13, 2117 (2013).

    Article  CAS  Google Scholar 

  15. S. Li, S. Luo and R. Guo, Bioresour. Technol., 136, 267 (2013).

    Article  CAS  Google Scholar 

  16. A. Toledo-Cervantes, M. Morales, E. Novelo and S. Revah, Bioresour. Technol., 130, 652 (2013).

    Article  CAS  Google Scholar 

  17. M.G. De Morais and J.A.V. Costa, J. Biotechnol., 129, 439 (2007).

    Article  Google Scholar 

  18. A. Widjaja, C. C. Chien and Y. H. Ju, J. Taiwan Inst. Chem. E., 40, 13 (2009).

    Article  CAS  Google Scholar 

  19. M. A. Islam, G. A. Ayoko, R. Brown, D. Stuart and K. Heimann, Procedia. Eng., 56, 591 (2013).

    Article  CAS  Google Scholar 

  20. E.Y. Ortiz Montoya, A. A. Casazza, B. Aliakbarian, P. Perego, A. Converti and J. C. M. de Carvalho, Biotechnol. Progr., 30, 916 (2014).

    Article  CAS  Google Scholar 

  21. Y. A. M. Yusof, J. M. H. Basari, N. A. Mukti, R. Sabuddin, A. R. Muda, S. Sulaiman, S. Makpol and W. Z.W. Ngah, Afr. J. Biotechnol., 10, 13536 (2013).

    Google Scholar 

  22. M. Tsuzuki, E. Ohnuma, N. Sato, T. Takaku, and A Kawaguchi, Plant. Physiol., 93, 851 (1990).

    Article  CAS  Google Scholar 

  23. E.A. Muradyan, G.L. Klyachko-Gurvich, L.N. Tsoglin, T.V. Sergeyenko and N. A. Pronina, Russ. J. Plant Physiol., 51, 53 (2004).

    Article  CAS  Google Scholar 

  24. H. Hoshida, T. Ohira, A. Minematsu, R. Akada and Y. Nishizawa, J. Appl. Phycol., 17, 29 (2005).

    Article  Google Scholar 

  25. C. Largeau, E. Casadevall, C. Berkaloff and P. Dhamelincourt, Phytochem., 19, 1043 (1980).

    Article  CAS  Google Scholar 

  26. Y. Shen and W.Q. Yuan, Adv. Mater. Res., 393, 655 (2012).

    Google Scholar 

  27. C. Zhu and Y. Lee, J. Appl. Phycol., 9, 189 (1997).

    Article  Google Scholar 

  28. E. Ono and J. Cuello, Biosystems Eng., 96, 129 (2007).

    Article  Google Scholar 

  29. J. Folch, M. Lees and G. Sloane-Stanley, J. Biol. Chem., 226, 497 (1957).

    CAS  Google Scholar 

  30. G. Lepage and C. C. Roy, J. Lipid Res., 25, 1391 (1984).

    CAS  Google Scholar 

  31. T.L. Bergman, F.P. Incropera, A. S. Lavine and D.P. DeWitt, Fundamentals of heat and mass transfer, Seventh Ed., John Wiley and Sons, New York (2011).

    Google Scholar 

  32. Y. Ge, J. Liu and G. Tian, Bioresour. Technol., 102, 130 (2011).

    Article  CAS  Google Scholar 

  33. C. Dayananda, R. Sarada, M. Usha Rani, T. Shamala and G. Ravishankar, Biomass Bioenerg., 31, 87 (2007).

    Article  CAS  Google Scholar 

  34. L. Krienitz, D. Hepperle, H.B. Stich and W. Weiler, Phycologia, 39, 19 (2000).

    Article  Google Scholar 

  35. D. Tang, W. Han, P. Li, X. Miao and J. Zhong, Bioresour. Technol., 102, 3071 (2011).

    Article  CAS  Google Scholar 

  36. M. Tsuzuki, M. Gantar, K. Aizawa and S. Miyachi, Plant Cell Physiol., 27, 737 (1986).

    Google Scholar 

  37. L. G. Dickson, R. A. Galloway and G.W. Patterson, Plant. Physiol., 44, 1413 (1969).

    Article  CAS  Google Scholar 

  38. M. Hoffmann, K. Marxen, R. Schulz and K.H. Vanselow, Mar. Drugs, 8, 2526 (2010).

    Article  CAS  Google Scholar 

  39. D. Pal, I. Khozin-Goldberg, Z. Cohen and S. Boussiba, Appl. Microbiol. Biotechnol., 90, 1429 (2011).

    Article  CAS  Google Scholar 

  40. T. Chrismadha and M. A. Borowitzka, J. Appl. Phycol., 6, 67 (1994).

    Article  Google Scholar 

  41. G. Knothe, Energy Fuels, 22, 1358 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasa Reddy Ronda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parupudi, P., Kethineni, C., Dhamole, P.B. et al. CO2 fixation and lipid production by microalgal species. Korean J. Chem. Eng. 33, 587–593 (2016). https://doi.org/10.1007/s11814-015-0152-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0152-5

Keywords

Navigation