Skip to main content
Log in

Integrated fabrication-conjugation approaches for biomolecular assembly and protein sensing with hybrid microparticle platforms and biofabrication - A focused minireview

  • Invited Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Controlled manufacturing of polymeric hydrogel microparticles is crucial, yet challenging, for rapid and sensitive detection of biomacromolecules in biodiagnostics and biosensing applications. Our approach is an integrated fabrication-conjugation strategy utilizing a simple and robust micromolding technique and biofabrication with a potent aminopolysaccharide chitosan as an efficient conjugation handle for high-yield bioorthogonal conjugation reactions. We present a concise overview of our recent findings in the controlled fabrication of shape-encoded or core-shell structured microparticles consisting of poly(ethylene glycol) (PEG) and short single-stranded (ss) DNA or chitosan, and their utility in the covalent conjugation and nucleic acid hybridization-based assembly of target ssDNAs, proteins and viral nanotemplates. Particularly, two novel routes to achieve substantially improved protein conjugation capacity and kinetics are presented from our recent reports: tobacco mosaic virus (TMV) as a high capacity nanotubular template and polymerization-induced phase separation (PIPS) of pre-polymer droplets for controlled core-shell structure formation. We envision that our fabrication-conjugation approaches reported here, combined with our current and future endeavors in improved fabrication and design of controlled structures with chemical functionalities, should permit a range of manufacturing strategies for advanced functional microscale materials and platforms in a wide array of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. N. Baker, M. H. Rendall, A. Patel, P. Boyd, M. Hoare, R. B. Freedman and D. C. James, Trends Biotechnol., 20, 149 (2002).

    Article  CAS  Google Scholar 

  2. M. Uttamchandani, J. L. Neo, B. N. Z. Ong and S. Moochhala, Trends Biotechnol., 27, 53 (2009).

    Article  CAS  Google Scholar 

  3. J. D. Wulfkuhle, L. A. Liotta and E. F. Petricoin, Nat. Rev. Cancer, 3, 267 (2003).

    Article  CAS  Google Scholar 

  4. A. V. Fotin, A. L. Drobyshev, D. Y. Proudnikov, A. N. Perov and A. D. MIrzabekov, Nucleic Acids Res., 26, 1515 (1998).

    Article  CAS  Google Scholar 

  5. D. C. Pregibon and P. S. Doyle, Anal. Chem., 81, 4873 (2009).

    Article  CAS  Google Scholar 

  6. D. A. Zubtsov, E. N. Savvateeva, A. Y. Rubina, S. V. Pan’kov, E. V. Konovalova, O. V. Moiseeva, V. R. Chechetkin and A. S. Zasedatelev, Anal. Biochem., 368, 205 (2007).

    Article  CAS  Google Scholar 

  7. J. E. Meiring, M. J. Schmid, S. M. Grayson, B. M. Rathsack, D. M. Johnson, R. Kirby, R. Kannappan, K. Manthiram, B. Hsia, Z. L. Hogan, A. D. Ellington, M. V. Pishko and C. G. Willson, Chem. Mater., 16, 5574 (2004).

    Article  CAS  Google Scholar 

  8. S. Park, H. J. Lee and W. G. Koh, Sensors-Basel, 12, 8426 (2012).

    Article  CAS  Google Scholar 

  9. B. F. Ye, Y. J. Zhao, T. T. Li, Z. Y. Xie and Z. Z. Gu, J. Mater. Chem., 21, 18659 (2011).

    Article  CAS  Google Scholar 

  10. X. H. Ji, N. G. Zhang, W. Cheng, F. Guo, W. Liu, S. S. Guo, Z. K. He and X. Z. Zhao, J. Mater. Chem., 21, 13380 (2011).

    Article  Google Scholar 

  11. Y. J. Zhao, H. C. Shum, H. S. Chen, L. L. A. Adams, Z. Z. Gu and D. A. Weitz, J. Am. Chem. Soc., 133, 8790 (2011).

    Article  CAS  Google Scholar 

  12. J. Hu, X. W. Zhao, Y. J. Zhao, J. Li, W. Y. Xu, Z. Y. Wen, M. Xu and Z. Z. Gu, J. Mater. Chem., 19, 5730 (2009).

    Article  CAS  Google Scholar 

  13. D. C. Pregibon, M. Toner and P. S. Doyle, Science, 315, 1393 (2007).

    Article  CAS  Google Scholar 

  14. D. C. Appleyard, S. C. Chapin, R. L. Srinivas and P. S. Doyle, Nat. Protoc., 6, 1761 (2011).

    Article  CAS  Google Scholar 

  15. C. L. Lewis, C. H. Choi, Y. Lin, C. S. Lee and H. Yi, Anal. Chem., 82, 5851 (2010).

    Article  CAS  Google Scholar 

  16. R. J. Meagher, J. I. Won, L. C. McCormick, S. Nedelcu, M. M. Bertrand, J. L. Bertram, G. Drouin, A.E. Barron and G. W. Slater, Electrophoresis, 26, 331 (2005).

    Article  CAS  Google Scholar 

  17. S. Jung and H. Yi, Langmuir, 28, 17061 (2012).

    Article  CAS  Google Scholar 

  18. H. Yi, L. Q. Wu, W. E. Bentley, R. Ghodssi, G. W. Rubloff, J. N. Culver and G. F. Payne, Biomacromolecules, 6, 2881 (2005).

    Article  CAS  Google Scholar 

  19. S. T. Koev, P. H. Dykstra, X. Luo, G. W. Rubloff, W. E. Bentley, G. F. Payne and R. Ghodssi, Lab Chip, 10, 3026 (2010).

    Article  CAS  Google Scholar 

  20. S. A. Agnihotri, N. N. Mallikarjuna and T. M. Aminabhavi, J. Controlled Release, 100, 5 (2004).

    Article  CAS  Google Scholar 

  21. F. Croisier and C. Jerome, Eur. Polym. J., 49, 780 (2013).

    Article  CAS  Google Scholar 

  22. D. L. Nelson, A. L. Lehninger and M. M. Cox, Lehninger Principles of Biochemistry, W. H. Freeman, New York (2008).

    Google Scholar 

  23. S. Jung and H. Yi, Biomacromolecules, 14, 3892 (2013).

    Article  CAS  Google Scholar 

  24. S. Jung and H. Yi, Langmuir, 30, 7762 (2014).

    Article  CAS  Google Scholar 

  25. C. H. Choi, J. M. Jeong, S. M. Kang, C. S. Lee and J. Lee, Adv. Mater., 24, 5078 (2012).

    Article  CAS  Google Scholar 

  26. S. Jung and H. Yi, Chem. Mater., 27, 3988 (2015).

    Article  CAS  Google Scholar 

  27. C. X. Yang, C. H. Choi, C. S. Lee and H. M. Yi, ACS Nano, 7, 5032 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunmin Yi.

Additional information

Hyunmin Yi is currently an Associate Professor at the Department of Chemical and Biological Engineering of Tufts University in Massachusetts, U.S.A. He received his B.S. degree in Chemical Technology (Seoul National University), M.S. degree in Biochemical Engineering (Seoul National University) and Ph.D. degree in Chemical Engineering (University of Maryland at College Park), and was a postdoctoral fellow at the Center for Biosystems Research then an Assistant Research Scientist at the Department of Materials Science and Engineering, both at the University of Maryland at College Park, prior to arrival at Tufts in 2006. His research interests span broad areas of smart biomaterials, biofabrication, nanobiotechnology and biochemical engineering. Professor Yi was the recipient of KIChE President Award in 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, S., Yi, H. Integrated fabrication-conjugation approaches for biomolecular assembly and protein sensing with hybrid microparticle platforms and biofabrication - A focused minireview. Korean J. Chem. Eng. 32, 1713–1719 (2015). https://doi.org/10.1007/s11814-015-0147-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0147-2

Keywords

Navigation