Skip to main content
Log in

Hydrodynamic characteristics of bubbles in bubbling fluidized bed with internals

  • Fluidization, Particle Technology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The hydrodynamic characteristics of bubbles in bubbling fluidized beds with internals were investigated. The signal range of the optical fiber probe was calibrated from 0.5 V (the bubble phase) to 4.5 V (the emulsion phase). Data sampling involved an optical probe at a rate of 903Hz for 725 s. To obtain improved bubble data, the data were analyzed by three processes: threshold determination, bubble analysis, and erroneous bubble elimination. The data on the bubble rise velocity and bubble frequency were measured and compared to the bed height (0.2–0.7 m), superficial gas velocity (4–7 U mf ), radial position r/R (0.22–0.95), number of distributor nozzles (2, 3, and 7), and the use of the internals with different hydraulic diameters of 0.19, 0.17, and 0.15 m. The experimental data were compared with several reported empirical correlations. Both the bubble rise velocity and bubble frequency increased with decreasing number of distributor nozzles. Furthermore, in the presence of internals, the bubble rise velocity decreased, whereas the bubble frequency increased with decreasing hydraulic diameter of the cross-sectional area divided by internals. Moreover, bubble breaking occurred at a specific position of r/R=0.7, not at the edge of the internals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Han, News & Information for Chemical Engineers, 31, 313 (2013).

    Google Scholar 

  2. L.R. Glicksman, W. K. Lord, M. Sakagami, Chem. Eng. Sci., 42, 479 (1987).

    Article  CAS  Google Scholar 

  3. Y. Jin, F. Wei and Y. Wang, Effect of Internal Tubes and Baffles, Handbook of Fluidization and Fluid-Particle Systems, Ed. by Yang, W. C., Marcel Dekker, Inc., New York (2003).

    Google Scholar 

  4. P. Jiang, H.T. Bi, R.H. Jean and L.S. Fan, AIChE J., 37, 1392 (1991).

    Article  CAS  Google Scholar 

  5. C. G. Zheng, Y.K. Tung, Y. S. Xia, B. Hun and M. Kwauk, Voidage redistribution by ring internals in fast fluidizationm, Fluidization ′91, 168 (1991).

    Google Scholar 

  6. C.G. Zheng, Y.K. Tung, H.Z. Li and M. Kwauk, Characteristics of fast fluidized beds with internals, Fluidization VII, 275 (1992).

    Google Scholar 

  7. J. X. Zhu, M. Salah and Y. M. Zhou, J. Chem. Eng. Jpn., 30, 928 (1997).

    Article  CAS  Google Scholar 

  8. Karri SBR, PSRI Research Report No. 60 (1990).

    Google Scholar 

  9. Karri SBR, Grid Design Chapter, PSRI Design Manual (1991).

    Google Scholar 

  10. J. H. Lim, Y. Lee, J. H. Shin, K. Bae, J. H. Han and D. H. Lee, Powder Technol., 266, 312 (2014).

    Article  CAS  Google Scholar 

  11. T. Knowlton, R. Karri and R. Cocco, PSRI Fluidization Seminar and Workshop, Particulate Solid Research Inc. (2011).

    Google Scholar 

  12. C.Y. Wen, N.R. Deole and L. H. Chen, Powder Technol., 31, 175 (1982).

    Article  CAS  Google Scholar 

  13. J. M. Schweitzer, J. Bayle and T. Gauthier, Chem. Eng. Sci., 56, 1103 (2001).

    Article  CAS  Google Scholar 

  14. J. Zhang, Bubble columns and three-phase fluidized beds: Flow regimes and bubble characteristics, Ph. D. Thesis, The University of British Columbia (1996).

    Google Scholar 

  15. C. Sobrino, J. A. Almendros-Ibanez, D. Santana, C. Vazquez and M. de Vega, Chem. Eng. Sci., 64, 2307 (2009).

    Article  CAS  Google Scholar 

  16. S. Karimipour and T. Pugsley, Powder Technol., 205, 1 (2011).

    Article  CAS  Google Scholar 

  17. J. F. Davidson and D. Harrison, Fluidized particles, Cambridge University Press, London (1963).

    Google Scholar 

  18. R.C. Darton, R.D. La Naueza, J. F. Davidson and D. Harrison, Trans. Inst. Chem. Eng., 55, 274 (1977).

    CAS  Google Scholar 

  19. S. Mori and C. Y. Wen, AIChE J., 21, 109 (1975).

    Article  CAS  Google Scholar 

  20. P. Cai, M. Schiavetti, G.D. Michele and G. C. Grazzini, Powder Technol., 80, 99 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Hyun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, JH., Shin, JH., Bae, K. et al. Hydrodynamic characteristics of bubbles in bubbling fluidized bed with internals. Korean J. Chem. Eng. 32, 1938–1944 (2015). https://doi.org/10.1007/s11814-015-0131-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0131-x

Keywords

Navigation