Skip to main content
Log in

Catalytic cracking of inedible camelina oils to hydrocarbon fuels over bifunctional Zn/ZSM-5 catalysts

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Catalytic cracking of camelina oils to hydrocarbon fuels over ZSM-5 and ZSM-5 impregnated with Zn2+ (named bifunctional catalyst) was individually carried out at 500 °C using a tubular fixed-bed reactor. Fresh and used catalysts were characterized by ammonia temperature-programmed desorption (NH3-TPD), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and nitrogen isothermal adsorption/desorption micropore analyzer. The effect of catalysts on the yield rate and qualities of products was discussed. The loading of Zn2+ to ZSM-5 provided additional acid sites and increased the ratio of Lewis acid site to Brønsted acid site. BET results revealed that the surface area and pore volume of the catalyst decreased after ZSM-5 was impregnated with zinc, while the pore size increased. When using the bifunctional catalyst, the pH value and heating value of upgraded camelina oils increased, while the oxygen content and moisture content decreased. Additionally, the yield rate of hydrocarbon fuels increased, while the density and oxygen content decreased. Because of a high content of fatty acids, the distillation residues of cracking oils might be recycled to the process to improve the hydrocarbon fuel yield rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. D. Maher and D.C. Bressler, Bioresour. Technol., 98, 2351 (2007).

    Article  CAS  Google Scholar 

  2. A. Demirbas and H. Kara, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 28, 619 (2006).

    Article  CAS  Google Scholar 

  3. T. M. Rao, M. M. Clavero and M. Makkee, ChemSusChem., 3, 807 (2010).

    Article  CAS  Google Scholar 

  4. M. Chiappero, P. Do, S. Crossley, L. Lobban and D. Resasco, Fuel, 90, 1155 (2011).

    Article  CAS  Google Scholar 

  5. N. Zeeshan, X. Tang and W. Fei, Korean J. Chem. Eng., 26, 1528 (2009).

    Article  Google Scholar 

  6. H. Wang, S. Yan, S.O. Salley and K.Y. Simon Ng, Ind. Eng. Chem. Res., 51, 10066 (2012).

    Article  CAS  Google Scholar 

  7. J. Xu, J. Jiang, Y. Sun and J. Chen, Bioresour. Technol., 101, 9803 (2010).

    Article  CAS  Google Scholar 

  8. H. Zhang, Y. Cheng, T.P. Vispute, R. Xiao and G.W. Huber, Energy Environ. Sci., 4, 2297 (2011).

    Article  CAS  Google Scholar 

  9. J. Penzien, A. Abraham, J. A. Bokhoven, A. Jentys, T. E. Muller, C. Sievers and J. A. Lercher, J. Phys. Chem., 108, 4116 (2004).

    Article  CAS  Google Scholar 

  10. A. Demirbas, Energy Sources, 25, 457 (2003).

    Article  CAS  Google Scholar 

  11. Z. Y. Zakaria, J. Linnekoski and N. A. Amin, Chem. Eng., 207–208, 803 (2012).

    Article  Google Scholar 

  12. R. K. Sharma, M. Anand, B. S. Rana, R. Kumar, S.A. Farooqui, M. G. Sibi and A. K. Sinha, Catal. Today, 198, 314 (2012).

    Article  CAS  Google Scholar 

  13. H. Li, B. Shen, J. C. Kabalu and M. Nchare, Renew. Energy, 34, 1033 (2009).

    Article  CAS  Google Scholar 

  14. A. A. Boateng, C. A. Mullen and N. M. Goldberg, Energy Fuels, 24, 6624 (2010).

    Article  CAS  Google Scholar 

  15. A. E. Atabani, A. S. Silitonga, H. C. Ong, T. M. I. Mahlia, H. H. Masjuki, I. A. Badruddin and H. Fayaz, Renew. Sust. Energy Rev., 18, 211 (2013).

    Article  CAS  Google Scholar 

  16. X. Zhao, L. Wei, J. Julson and Y. Huang, Journal of Sustainable Bioenergy Systems, 4, 199 (2014).

    Article  Google Scholar 

  17. T. R. Carlson, J. Jae, Y. Lin, G.A. Tompsett and G. W. Huber, J. Catal., 2, 110 (2010).

    Article  Google Scholar 

  18. X. Zhao, L. Wei, J. Julson, Q. Qiao, A. Dubey and G. Anderson, N. Biotechnol., 32, 300 (2015).

    Article  CAS  Google Scholar 

  19. X. Ren, N. Li, J. Cao, Z. Wang, S. Liu and S. Xiang, Appl. Catal. A: Gen., 298, 144 (2006).

    Article  CAS  Google Scholar 

  20. R. Weingarten, G. A. Tompsett, W. C. Conner Jr. and G. W. Huber, J. Catal., 279, 174 (2011).

    Article  CAS  Google Scholar 

  21. A. Zheng, Z. Zhao, S. Chang, Z. Huang, H. Wu, X. Wang, F. He and H. Li, J. Mol. Catal. A: Chem., 383, 23 (2014).

    Article  Google Scholar 

  22. H. Jin, X. Wang, Z. Gu, J.D. Hoefelmeyer, K. Muthukumarappan and J. Julson, RSC Adv., 4, 14136 (2014).

    Article  CAS  Google Scholar 

  23. X. Zhao, L. Wei and J. Julson, AIMS Energy, 2, 193 (2014).

    Article  Google Scholar 

  24. Y. Huang, L. Wei, J. Julson, Y. Gao and X. Zhao, J. Anal. Appl. Pyrolysis, 111, 148 (2015).

    Article  CAS  Google Scholar 

  25. S. Bezergianni, S. Voutetakis and A. Kalogianni, Ind. Eng. Chem. Res., 48, 8402 (2009).

    Article  CAS  Google Scholar 

  26. D. L. Trimm, Appl. Catal. A: Gen., 212, 153 (2001).

    Article  CAS  Google Scholar 

  27. S. Kouva, J. Kanervo, F. Schüßler, R. Olindo, J.A. Lercher and O. Krause, Chem. Eng. Sci., 89, 40 (2013).

    Article  CAS  Google Scholar 

  28. A. M. Camiloti, S. L. Jahn, N. D. Velasco, L. F. Moura and D. Cardoso, Appl. Catal. A: Gen., 182, 107 (1999).

    Article  CAS  Google Scholar 

  29. G. Bagnasco, J. Catal., 159, 249 (1996).

    Article  Google Scholar 

  30. F. Lónyi and J. Valyon, Thermochim. Acta, 373, 53 (2001).

    Article  Google Scholar 

  31. N. Kumar, L. E. Lindfors and R. Byggningsbacka, Appl. Catal. A: Gen., 139, 189 (1996).

    Article  CAS  Google Scholar 

  32. S. Al-Khattaf, Appl. Catal. A: Gen., 231, 293 (2002).

    Article  CAS  Google Scholar 

  33. Y.C. Sharma, B. Singh and J. Korstad, Energy Fuels, 24, 3223 (2010).

    Article  CAS  Google Scholar 

  34. J. Jae, G. A. Tompsett, A. J. Foster, K. D. Hammond, S. M. Auerbath, R. F. Lobo and G. W. Huber, J. Catal., 279, 257 (2011).

    Article  CAS  Google Scholar 

  35. Y. Jiang, J. Juan, X. Meng, W. Cao, M. A. Yarmo and J. Zhang, Chem. Res. Chinese U., 23, 349 (2007).

    Article  CAS  Google Scholar 

  36. M. Khatamian and M. Irani, J. Iranian Chem. Soc., 6, 187 (2009).

    Article  CAS  Google Scholar 

  37. V. S. Yaliwal, S. R. Daboji, N. R. Banapurmath and P. G. Tewari, Int. J. Eng. Sci. Technol., 2, 5938 (2010).

    Google Scholar 

  38. E. Santillan-Jimenez, T. Morgan, J. Lacny, S. Mohapantra and M. Crocker, Fuel, 103, 1010 (2013).

    Article  CAS  Google Scholar 

  39. A. C. Rustan and C. A. Drevon, Encyclopedia of Life Sciences, 1 (2005).

    Google Scholar 

  40. H. Noureddini, B. C. Teoh and L. D. Clements, J. Am. Oil Chem. Soc., 69, 1189 (1992).

    Article  CAS  Google Scholar 

  41. H. Zhang, R. Xiao, H. Huang and G. Xiao, Bioresour. Technol., 100, 1428 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Wei.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Wei, L., Julson, J. et al. Catalytic cracking of inedible camelina oils to hydrocarbon fuels over bifunctional Zn/ZSM-5 catalysts. Korean J. Chem. Eng. 32, 1528–1541 (2015). https://doi.org/10.1007/s11814-015-0028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0028-8

Keywords

Navigation