Skip to main content
Log in

Adsorption breakthrough dynamics of zeolites for ethylene recovery from fluid catalytic cracking fuel-gas

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The adsorption dynamics of zeolite 13X, 10X and 5A beds was investigated for recovering ethylene (C2H4) from fluidized catalytic cracking fuel-gas. As a feed gas, a ternary mixture (CH4 : C2H4 : C2H6) and a model FCC fuel-gas (CH4 : C2H4 : C2H6 : C3H6 : N2 : H2) were used for breakthrough experiments. In the ternary mixture, the concentration profiles showed similar patterns in all zeolite beds. C2H4 showed higher adsorption affinity than the others in all zeolites and zeolite 5A had the highest adsorption capacity of C2H4. In the six-component mixture, the breakthrough curves in the zeolite 5A bed showed similar patterns to the results of the ternary mixture. Although weak adsorbates could be removed during the adsorption step, CH4 and N2 imparted a steric hindrance to the initial stage of C2H4 adsorption in the zeolite 5A bed. Since vacuum desorption contributed to producing a high purity of C2H4, a pressure vacuum swing adsorption process was recommended to recover C2H4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Cho, S. S. Han, J. N. Kim, J. H. Park and H. K. Rhee, Korean J. Chem. Eng., 19, 821 (2002).

    Article  CAS  Google Scholar 

  2. J.H. Park, S. S. Han, J.N. Kim and S.H. Cho, Korean J. Chem. Eng., 21, 236 (2004).

    Article  CAS  Google Scholar 

  3. S. H. Cho, J. H. Park, S. S. Han and J. N. Kim, Adsorption, 11, 145 (2005).

    Article  Google Scholar 

  4. R.W. Triebe, F. H. Tezel and K.C. Khulbe, Gas Sep. Purif., 10, 81 (1996).

    Article  CAS  Google Scholar 

  5. C. A. Grande, C. Gigola and A. E. Rodrigues, Ind. Eng. Chem. Res., 41, 85 (2002).

    Article  CAS  Google Scholar 

  6. M.A. Granato, T. J. H. Vlugt and A. E. Rodrigues, Ind. Eng. Chem. Res., 46, 7239 (2007).

    Article  CAS  Google Scholar 

  7. M. Jin, S. S. Kim, Y.D. Kim, J. N. Park, J. H. Kim, C. H. Ko, J. N. Kim and J.M. Kim, J. Mater. Chem. A, 1, 6653 (2013).

    Article  CAS  Google Scholar 

  8. C. H. Ko, S. S. Han, J. H. Park, S. H. Cho and J. N. Kim, Ind. Eng. Chem. Res., 45, 9129 (2006).

    Article  CAS  Google Scholar 

  9. H.W Lee, J. H. Park, S. S. Han, J. N. Kim, S. H. Cho and Y.T. Lee, Sep. Sci. Technol., 39, 1365 (2004).

    Article  CAS  Google Scholar 

  10. Y.W. You, D.G. Lee, K.Y. Yoon, D.K. Moon, S.M. Kim and C.-H. Lee, Int. J. Hydrogen Energy, 37, 18175 (2012).

    Article  CAS  Google Scholar 

  11. S. Ahn, Y.W. You, D.G. Lee, K.H. Kim, M. Oh and C.-H. Lee, Chem. Eng. Sci., 68, 413 (2012).

    Article  CAS  Google Scholar 

  12. S. S. Han, J. H. Park, J. N. Kim and S. H. Cho, Adsorption, 11, 621 (2005).

    Article  Google Scholar 

  13. Y.H. Kim, D.G. Lee, D.K. Moon, S.H. Byeon, H.W. Ahn and C.-H. Lee, Korean J. Chem. Eng., 31, 132 (2014).

    Article  CAS  Google Scholar 

  14. J. G. Jee, S. J. Lee and C.-H. Lee, AIChE J., 51, 2988 (2005).

    Article  CAS  Google Scholar 

  15. S. J. Lee, J. J. Hwan, J.H. Moon, J.G. Jee and C.-H. Lee, Ind. Eng. Chem. Res., 46, 3720 (2007).

    Article  CAS  Google Scholar 

  16. D. G. Lee, J. H. Kim and C.-H. Lee, Sep. Purif. Technol., 77, 312 (2011).

    Article  CAS  Google Scholar 

  17. D. G. Lee, Y. J. Han and C.-H. Lee, Korean J. Chem. Eng., 29, 1246 (2012).

    Article  CAS  Google Scholar 

  18. Y. H. Park, D. K. Moon, Y. H. Kim, H. Ahn and C.-H. Lee, Adsorption, 20, 631 (2014).

    Article  CAS  Google Scholar 

  19. J.W. Carter and H. Husain, Chem. Eng. Sci., 29, 267 (1974).

    Article  CAS  Google Scholar 

  20. G. Li, P. Xiao, D. Xu and P. A. Webley, Chem. Eng. Sci., 66, 1825 (2011).

    Article  CAS  Google Scholar 

  21. Y.-S. Bae and C.-H. Lee, Carbon, 43, 95 (2005).

    Article  CAS  Google Scholar 

  22. J.G. Jee, M.B. Kim and C.-H. Lee, Chem. Eng. Sci., 60, 869 (2005).

    Article  CAS  Google Scholar 

  23. M.-B. Kim, Y.-S. Bae, D.-K. Choi and C.-H. Lee, Ind. Eng. Chem. Res., 45, 5050 (2006).

    Article  CAS  Google Scholar 

  24. X.-Z. Chu, Z.-P. Cheng, X.-X. Xiang, J.-M. Xu, Y.-J. Zhao, W.-G. Zhang, J.-S. Lv, Y.-P. Zhou, L. Zhou, D. K. Moon and C.-H. Lee, Int. J. Hydrogen Energy, 39, 4437 (2014).

    Article  CAS  Google Scholar 

  25. J. Y. Yang and C.-H. Lee, AIChE J., 44, 1325 (1998).

    Article  CAS  Google Scholar 

  26. J.G. Jee, M.B. Kim and C.-H. Lee, Ind. Eng. Chem. Res., 40, 868 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Ha Lee.

Additional information

This article is dedicated to Prof. Hwayong Kim on the occasion of his retirement from Seoul National Univerisity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, D., Woo, EJ., Choi, J.W. et al. Adsorption breakthrough dynamics of zeolites for ethylene recovery from fluid catalytic cracking fuel-gas. Korean J. Chem. Eng. 32, 808–815 (2015). https://doi.org/10.1007/s11814-014-0279-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0279-9

Keywords

Navigation