Skip to main content
Log in

Effect of attapulgite calcination on heavy metal adsorption from acid mine drainage

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Attapulgite calcined at 973.15K was characterized and utilized as an adsorbent for the removal of heavy metals and neutralization of acid mine drainage (AMD) from a gold mine. Batch adsorption experiments were carried out using a thermostatic shaker. Activated attapulgite showed that it can neutralize AMD as it raised the pH from 2.6 to 7.3 after a residence time of 2 h. Metal ion removal after 2 h was 100% for Cu (II), 99.46% for Fe (II), 96.20% for Co (II), 86.92% for Ni (II) and 71.52% for Mn (II) using a 2.5% w/v activated attapulgite loading. The adsorption best fit the Langmuir isotherm; however, Cu (II), Co (II), and Fe (II) data fit the Freundlich isotherm as well. Calcination at 973.15 K resulted in the reduction of the equilibrium residence time from 4 to 2 h, solid loading reduction from 10 to 2.5% m/v and an increase in maximum adsorption capacity compared with unactivated attapulgite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. L. Younger, S. A. Banwart and R. S. Hedin, Mine water hydrology, pollution, remediation, Dordrecht, The Netherlands, Kluwer Academic (2002).

    Google Scholar 

  2. W. Stumm and J. J. Morgan, Aquatic Chemistry, 3rd Ed., Wiley, New York (1996).

    Google Scholar 

  3. Expert Team of the Inter-Ministerial Committee, Mine water management in the Witwatersrand Gold Fields with special emphasis on acid mine drainage, Report to the Inter-Ministerial Committee on Acid Mine Drainage. Pretoria: Department of Water Affairs (2010).

    Google Scholar 

  4. M. P. Filion, L. L. Siroois and K. Ferguson, CIM Bulletin, 83, 33 (1990).

    Google Scholar 

  5. M.A. Caraballo, F. Macías, T. S. Rötting, J.M. Nieto and C. Ayora, Environ. Pollut., 159, 3613 (2011).

    Article  CAS  Google Scholar 

  6. C.B. Murphy and S. J. Spiegel, Water Pollut. Federat., 54, 849 (1982).

    CAS  Google Scholar 

  7. C.A. Rios, C.D. Williams and C. L. Roberts, J. Hazard. Mater., 156, 23 (2008).

    Article  CAS  Google Scholar 

  8. H. Zhang, Z. Tong, T. Wei and Y. Tang, Desalination, 276, 103 (2011).

    Article  CAS  Google Scholar 

  9. T. Falayi and F. Ntuli, J. Ind. Eng. Chem. (2013), http://dx.doi.org/10.1016/j.jiec.2013.07.007.

    Google Scholar 

  10. H. Tutu, T. S. McCarthy and E. Cukrowska, Appl. Geochem., 23, 3666 (2008).

    Article  CAS  Google Scholar 

  11. R. L. Frost, C.A. Cash and J.T. Kloprogge, Vibrational Spectroscopy, 16, 173 (1998).

    Article  CAS  Google Scholar 

  12. J. Madejova and P. Komadel, Clays Clay Min., 49, 410 (2001).

    Article  CAS  Google Scholar 

  13. W. Yan, D. Liu, D. Tan, P. Yuan and M. Chen, Spectrochim. Acta Part A: Mol. Biomol. Spectroscopy, 97, 1052 (2012).

    Article  CAS  Google Scholar 

  14. W. Hirsiger, M. Muller-Vonmoos and H. G. Wiedemann, Thermochim. Acta, 13, 223 (1975).

    Article  CAS  Google Scholar 

  15. G.E. Van-Scoyoc, C. J. Serna and J. L. Ahlrichs, American Mineralogist, 64, 215 (1979).

    CAS  Google Scholar 

  16. J. B. Dixon and S.B. Weed, Minerals in Soil Environments, 2nd Ed. Soil Science Society of America, Wisconsin, USA (1989).

    Google Scholar 

  17. F. Ntuli and A. E. Lewis, Chem. Eng. Sci., 64, 2202 (2009).

    Article  CAS  Google Scholar 

  18. F. Gan, J, Zhou,_H. Wang, C. Du and X. Chen, Water Res., 43, 2907 (2009).

    Article  Google Scholar 

  19. H. Ucum, Y. K. Baghan, Y. Kaya, A. Cakici and O. F. Algurb, Desalination, 154, 233 (2003).

    Article  Google Scholar 

  20. E. H. James, Inorganic Chemistry Principles, Harper & Row (1978).

    Google Scholar 

  21. R. S. Juang, F.C. Wu and R. L. Tseng, Environ. Technol., 18, 525 (1997).

    Article  CAS  Google Scholar 

  22. R.E Tryball, Mass Transfers Operations, 3rd Ed., McGraw-Hill, New York (1980).

    Google Scholar 

  23. K. G. Bhattacharyya and S. S. Gupta, Appl. Clay Sci., 41, 1 (2008).

    Article  CAS  Google Scholar 

  24. I. P. Okoye and C. Obi, International Arch. Appl. Sci. Technol., 3, 58 (2012).

    CAS  Google Scholar 

  25. V. K. Gupta, Ind. Eng. Chem. Res., 37, 192 (1998).

    Article  CAS  Google Scholar 

  26. M. G. A. Vieira, A. F. Almeida Neto, M. L. Gimenes and M. G.C. da Silva, J. Hazard. Mater., 177, 362 (2010).

    Article  CAS  Google Scholar 

  27. M. Balintova, M. Holub and E. Singovszka, Chem. Eng. Trans., 28, 1 (2012).

    Google Scholar 

  28. B. Boonchom, S. Youngme, S. Maensiri and C. Danvirutai, J. Alloys Compd., 454, 78 (2008).

    Article  CAS  Google Scholar 

  29. X.D. Liu, M. Hagihala, X.G. Zheng, D. D. Meng and D.X. Guo, Chinese Physics Letters, 28, 1 (2011).

    Article  Google Scholar 

  30. L. Paavo and T. Jouni, ActaChemicaScandinavica, 27, 2287 (1973).

    Google Scholar 

  31. A, Mohammad, Desalination, 250, 885 (2010).

    Article  Google Scholar 

  32. G. Sposito, The Chemistry of Soils, New York, Oxford University Press (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freeman Ntuli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falayi, T., Ntuli, F. Effect of attapulgite calcination on heavy metal adsorption from acid mine drainage. Korean J. Chem. Eng. 32, 707–716 (2015). https://doi.org/10.1007/s11814-014-0266-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0266-1

Keywords

Navigation